
Aalto University
School of Science
Degree Programme of Computer Science and Engineering

Joakim Gunst

Introducing interaction design in
agile software development

Master’s Thesis
Espoo, March 30, 2012

Supervisor: Professor Marko Nieminen
Instructor: Tuomas Tolvanen, M.Sc. (Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Joakim Gunst
Title:
Introducing interaction design in agile software development
Date: March 30, 2012 Pages: 92
Professorship: Usability and User Interfaces Code: T-121
Supervisor: Professor Marko Nieminen
Instructor: Tuomas Tolvanen, M.Sc. (Tech.)
This thesis examines the question of how best to introduce interaction design
into the agile software development process. During the past decade, both agile
software development and interaction design have become increasingly popular
due to the various benefits they bestow. Agile software development increases
the visibility and adaptability of projects through the frequent delivery of
software in small increments, while interaction design improves the usability of
products through a focus on observing and understanding end users. Although
the two approaches share some similarities, questions remain about how best
to integrate them.

The research was conducted via action research at a Finnish software company.
The current state of interaction design and usability was analyzed and new in-
teraction design practices were tested in a project. The tested practices included
iterative paper prototyping before development and usability testing of the
product. Data was collected through interviews and observation. The results
indicate that there were both weaknesses and strengths in the software develop-
ment process concerning usability and that the new interaction design practices
could for the most part be successfully introduced. Based on the results, the
thesis presents six recommended practices for introducing interaction design at
the company.
Keywords: usability, agile software development, interaction design,

paper prototyping, usability testing
Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Joakim Gunst
Työn nimi:
Interaktiosuunnittelun käyttöönotto ketterässä ohjelmistokehityksessä
Päiväys: 30. maaliskuuta 2012 Sivumäärä: 92
Professuuri: Käyttöliittymät ja käytettävyys Koodi: T-121
Valvoja: Professori Marko Nieminen
Ohjaaja: Diplomi-insinööri Tuomas Tolvanen
Tämä diplomityö tutkii kysymystä, miten interaktiosuunnittelua voidaan par-
haiten ottaa käyttöön ketterässä ohjelmistokehitysprosessissa. Viimeisen vuo-
sikymmenen aikana sekä ketterä ohjelmistokehitys että interaktiosuunnitte-
lu ovat kasvattaneet suosiotaan niistä saatavien hyötyjen ansiosta. Ketterä
ohjelmistokehitys lisää projektien näkyvyyttä ja sopeutuvuutta tuottamalla
uusia ohjelmistoversioita tiheällä tahdilla, kun taas interaktiosuunnittelu pa-
rantaa tuotteiden käytettävyyttä keskittymällä loppukäyttäjien havainnointiin
ja ymmärtämiseen. Vaikka molemmissa lähestymistavoissa on yhtäläisyyksiä,
on niiden onnistuneessa yhdistämisessä vielä avoimia kysymyksiä.

Tutkimus suoritettiin toimintatutkimuksena suomalaisessa ohjelmistoyrityk-
sessä. Interaktiosuunnittelun ja käytettävyyden nykyistä tilaa analysoitiin
ja uusia interaktiosuunnittelukäytäntöjä testattiin projektissa. Testattavat
käytännöt sisälsivät iteratiivista paperiprototypointia ennen kehitystä sekä
tuotteen käytettävyystestausta. Tietoja kerättiin haastatteluilla ja havainnoin-
nilla. Tulokset osoittavat, että ohjelmistokehitysprosessissa oli sekä heikkouk-
sia että vahvuuksia liittyen käytettävyyteen ja että uudet interaktiosuunnit-
telukäytännöt olivat suurimmaksi osaksi mahdollisia ottaa käyttöön onnis-
tuneesti. Tulosten perusteella diplomityö esittää kuusi ehdotettua käytäntöä
interaktiosuunnittelun käyttöönottamiseksi tutkitussa yrityksessä.
Asiasanat: käytettävyys, ketterä ohjelmistokehitys, interaktiosuunnitte-

lu, paperiprototypointi, käytettävyystestaus
Kieli: Englanti

3

Aalto-universitetet
Högskolan för teknikvetenskaper
Examensprogram för datateknik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Joakim Gunst
Arbetets namn:
Introducering av interaktionsdesign i agil programutveckling
Datum: 30 mars 2012 Sidantal: 92
Professur: Användargränssnitt och användbar. Kod: T-121
Övervakare: Professor Marko Nieminen
Handledare: Diplomingenjör Tuomas Tolvanen
Detta diplomarbete undersöker frågan hur interaktionsdesign bäst kan intro-
duceras i den agila programutvecklingsprocessen. Under det senaste årtiondet
har både agil programutveckling och interaktionsdesign ökat i popularitet på
grund av de olika fördelar de medför. Agil programutveckling ökar synligheten
och anpassningsförmågan hos projekt genom produktion av program i små,
frekventa inkrement, medan interaktionsdesign förbättrar användbarheten hos
produkter genom fokusering på att observera och förstå slutanvändare. Även
om båda tillvägagångssätten delar vissa likheter, kvarstår frågor om hur de bäst
kan integreras.

Forskningen bedrevs genom aktionsforskning i ett finskt programvaruföretag.
Interaktionsdesignens och användbarhetens nuvarande tillstånd analyse-
rades och nya interaktionsdesignmetoder testades i ett projekt. I de
nya metoderna ingick iterativ pappersprototypning före utveckling samt
användbarhetstestning av produkten. Data samlades genom intervjuer och
observation. Resultaten visar att det fanns både svagheter och styrkor i pro-
gramutvecklingsprocessen vad beträffar användbarhet och att de nya interak-
tionsdesignmetoderna till största delen lyckat kunde tas i bruk. På basis av
resultaten presenterar diplomarbetet sex rekommenderade praxis för introdu-
cering av interaktionsdesign i företaget.
Nyckelord: användbarhet, agil programutveckling, interaktionsdesign,

pappersprototypning, användbarhetstestning
Språk: Engelska

4

Acknowledgments

First and foremost, I would like to thank Professor Marko Nieminen for
supervising my work and, especially, for giving clear and practical advice
on the goals, scope and methods of the thesis as well as the research and
writing process. I would also like to thank my instructor Tuomas Tolvanen
for the support and good advice he has provided throughout the project,
as well as Maija Pero for helping with practical arrangements. I am very
grateful to Rapal Oy for giving me the opportunity to do the research as part
of my work at the company. Finally, I would like to thank my colleagues
at Rapal Oy, especially Jari Turunen, Heli Etuaro and Juha Luotio, for
supporting me in the research and for helping with the arrangements that
made the end result possible.

Espoo, March 30, 2012

Joakim Gunst

5

Contents

1 Introduction 10
1.1 Introduction . 10
1.2 Research question and scope 11
1.3 Research approach . 12
1.4 Notes on terminology . 13

2 Literature review 14
2.1 Introduction . 14
2.2 Agile software development 14

2.2.1 Introduction . 14
2.2.2 Adoption of agile methods in industry 15
2.2.3 The benefits and limitations of agile methods 16
2.2.4 Scrum . 17
2.2.5 Extreme programming 18
2.2.6 Agile requirements . 20

2.3 Usability and interaction design 21
2.3.1 Introduction . 21
2.3.2 Usability . 21
2.3.3 User experience . 22
2.3.4 The benefits of usability 23
2.3.5 Interaction design . 23
2.3.6 Similarities and differences to agile methods 24

2.4 Interaction designers on agile teams 25
2.4.1 Introduction . 25
2.4.2 The interaction designer 26
2.4.3 Organization structure and collaboration 27
2.4.4 Cross-functionality . 27

2.5 Interaction design in the agile process 28
2.5.1 Introduction . 28
2.5.2 Parallel design and development tracks 29

6

2.5.3 Little design up front 30
2.6 Interaction design activities in agile projects 32

2.6.1 Introduction . 32
2.6.2 User research and modeling 32
2.6.3 Design and prototyping 33
2.6.4 Usability evaluation 34

3 Methods 36
3.1 Introduction . 36
3.2 Action research . 36
3.3 Case description . 37

3.3.1 The case company . 37
3.3.2 The case project . 37
3.3.3 The project team . 38

3.4 Research process . 39
3.5 Data collection and analysis 39

3.5.1 Interviews . 39
3.5.2 Observation . 40
3.5.3 Triangulation . 41

3.6 Ethical considerations and confidentiality 41
3.6.1 Informed consent . 41
3.6.2 Confidentiality . 41

3.7 Tested usability practices . 41
3.7.1 Paper prototyping . 42
3.7.2 Usability testing . 43
3.7.3 High-fidelity prototyping 44

4 Results 45
4.1 Introduction . 45
4.2 Current state analysis . 45

4.2.1 Interview participants 45
4.2.2 Usability of the current products 46
4.2.3 Usability in the development process 49
4.2.4 Usability in the future 52
4.2.5 Summary . 53

4.3 Action intervention . 53
4.3.1 Usability activities in general 53
4.3.2 The interaction designer role 55
4.3.3 The product vision and user research 56
4.3.4 The use of paper prototypes 57
4.3.5 Designing one sprint ahead 59

7

4.3.6 Usability testing of sprint results 60
4.3.7 Communication within the team 61
4.3.8 Summary . 62

5 Recommendations and conclusions 63
5.1 Introduction . 63
5.2 Recommended practices . 63

5.2.1 Include an interaction designer on the team 63
5.2.2 Understand the users before development begins . . 65
5.2.3 Design primarily using iterative paper prototyping . 66
5.2.4 Design one sprint ahead of development 68
5.2.5 Usability test sprint results with representative users 69
5.2.6 Support development through regular communication 71

5.3 Combining the practices . 72
5.4 Conclusions . 75

6 Discussion 76
6.1 Limitations . 76
6.2 Implications . 77
6.3 Future work . 78
6.4 Final comments . 78

A Current state analysis interview 84
A.1 Introduction . 84
A.2 The interviewee . 84
A.3 Current products . 85
A.4 The development process . 85
A.5 The Scenario project . 86
A.6 The future . 86

B Action intervention interview 87
B.1 Introduction . 87
B.2 Usability activities in general 87
B.3 The interaction designer role 88
B.4 The product vision and user research 88
B.5 The use of paper prototypes 89
B.6 Designing one sprint ahead 89
B.7 Usability testing of sprint results 89
B.8 Communication within the team 90
B.9 Other . 90

8

C Observation framework 91
C.1 Usability activities in general 91
C.2 The interaction designer role 91
C.3 The product vision and user research 91
C.4 The use of paper prototypes 92
C.5 Designing one sprint ahead 92
C.6 Usability testing of sprint results 92
C.7 Communication within the team 92

9

Chapter 1

Introduction

1.1 Introduction

Software development is an inherently complex activity, and the various
needs and motivations of customers, users, executives, developers and
other stakeholders contribute to this complexity. For a long time, careful
planning and rigorous engineering practices were seen as a way to make
this complexity manageable. But during the past decade, companies have
increasingly realized that most software requirements are unpredictable,
and people seldom know what they need or want before they see it before
them. Agile software development, where working software is developed
iteratively in small increments, has emerged and gained widespread popu-
larity as a solution to this problem. (e.g. Cohn, 2010; Leffingwell, 2011)

At the same time, another tradition has also gained popularity within
software development. Known by many names, it is now often called
interaction design, and it puts the goals and needs of the end-users of
the software in focus. While all software development strives to create
products that are useful, interaction design in addition strives to create
products that are usable, i.e. that can be used effectively, efficiently and
with satisfaction by the end users. In highly competitive markets, including
much consumer software, a focus on usability has already become essential
for product success. Now its importance is also growing in other markets,
such as enterprise software. (e.g. Cooper, Reimann, and Cronin, 2007)

While agile methods and interaction design share some of the same
goals and methods, there are also significant differences in approach. Agile
development iterates on working code and gets feedback from customers
or their representatives, while interaction design iterates on prototypes
and gets feedback from end-users. Interaction design puts an emphasis on

10

CHAPTER 1. INTRODUCTION 11

understanding users and designing solutions before development begins,
while agile methods strive to avoid up-front design as much as possible.
Reconciling these differences successfully has been an important research
topic during the past few years. It is also the topic of this thesis.

1.2 Research question and scope

This thesis approaches the topic from the point of view of a small Finnish
company producing enterprise software for the management of facilities,
real estate and infrastructure. While the company adopted agile software
development a few years ago, there has not been any explicit focus on
usability or interaction design. Recently, a goal of the company has been to
put more effort into improving the user experience of the products it offers.
This thesis is part of that effort, and has the goal of answering the following
research question:

What practices should be introduced into the agile software develop-
ment process at the company in order to improve the usability of the
products it develops?

The research question can be understood better by discussing it in parts.
First, agile software development is assumed. This means that the research
will not seek answers that are not at least to some extent compatible with
agile methods. The research will focus on agile methods in general rather
than any specific methodology. However, because Scrum is both the most
widely used agile methodology and the one in use at the company, it will
serve as the primary reference point when considering agile methods. Agile
software development is discussed in Section 2.2.

Second, the goal of introducing new practices is to improve the usabil-
ity of the products developed by the company. The research focuses on
improving usability rather than on improving user experience, because
usability is a better-defined concept. Usability also makes up a large part
of the overall user experience, especially in enterprise software. Usability
and interaction design is discussed in Section 2.3.

Third, for the purposes of this research, practices can be divided into
three types. Team practices, discussed in Section 2.4, consider how teams
should be structured and responsibility divided. Process practices, dis-
cussed in Section 2.5, consider how the development process should be
structured. Activity practices, discussed in Section 2.6, consider which
individual activities should be selected and how they should be performed.
The research considers all three kinds of practices.

CHAPTER 1. INTRODUCTION 12

Fourth, the measures by which practices are judged are how well they
fit into the agile development process at the company and the perceived
benefits of adopting them by different stakeholders. The goal of the research
is therefore not to measure how different practices actually improve the
usability of products. Rather, the practices that are selected are assumed to
improve usability based on the literature.

The research question is important not only for the company where the
research is conducted but also for other companies in similar circumstances.
Many companies have adopted agile methods during the past decade for
various reasons, but improving usability is rarely one of them (see Section
2.2.2). When usability increases in importance, companies with little prior
knowledge of usability or interaction design are unsure about how to make
this new priority compatible with their development process, especially
since the agile literature provides little guidance. This thesis gives one
answer to the question, with the hope that it will contribute to a future
where more software, including enterprise software, is easy and enjoyable
to use.

1.3 Research approach

The research approach used in this thesis is action research. Action research
is a qualitative research approach that is related to case study research,
except that the purpose of the research is not only to produce new scientific
knowledge but also to influence the subject of the study. In this thesis, the
purpose was not only to answer the research question but also to improve
the usability practices at the case company during the research.

The research is divided into three stages. In the literature review, pre-
sented in Chapter 2, the literature was reviewed for possible answers to
the research questions. In the current state analysis, the state of usability
at the company was analyzed, in order to select the practices best suited
for the company. In the action intervention, a set of practices were tested
and analyzed at the company. The research methods used for the current
state analysis and action intervention are described in Chapter 3 and the
results are presented in Chapter 4. Based on the literature review and the
results, a set of recommended practices are presented in Chapter 5 as an
answer to the research question. Finally, the results and recommendations
are discussed in Chapter 6.

CHAPTER 1. INTRODUCTION 13

1.4 Notes on terminology

The field of interaction design is riddled with terminology, and sometimes
it seems that every author wants to come up with a new term. There are
many good alternatives to the term interaction design that could have been
used almost synonymously for the purposes of this thesis. These include
user experience design, user-centered design, human-centered design, usability
engineering and usability design. The reason that this report uses interaction
design instead of these alternatives is that it appears to be one of the most
widely used terms in both industry and the literature at the moment. The
term is discussed in more detail in Chapter 2.3.5.

Design is a problematic word with multiple meanings. In software
development it is often used to mean technical design or architecture rather
than interaction design. In this thesis, the terms design and designer will
be used as abbreviations for interaction design and interaction designer,
unless otherwise noted.

This report uses lower-case spelling unless a noun is clearly a proper
noun. This means that agile is preferred to Agile, product owner is preferred
to Product Owner, and scrum master is preferred to ScrumMaster or Scrum
Master. However, Scrum is capitalized as it is the name of a specific method-
ology. Finally, sprint is used instead of iteration or cycle when referring to
the periods into which agile projects are divided, because it is in common
usage and is less likely to be confused with the general idea of an iteration.

Chapter 2

Literature review

2.1 Introduction

The purpose of this chapter is to find answers to the research question in
the literature. Because this requires an understanding of agile methods
as well as usability and interaction design, these foundational topics are
first presented separately, in Section 2.2 and Section 2.3. Only enough
detail is included to prepare the reader for the following topics, but the
overview also includes some recent findings which will be interesting even
for readers familiar with the topics.

After presenting the foundation, the main part of the literature review
begins. Section 2.4 explores the question of how interaction design work
should be structured in agile teams and organizations. Section 2.5 con-
tinues with the question of how best to integrate interaction design into
the agile software development process. Finally, Section 2.6 discusses how
individual usability activities are best performed in an agile environment.

2.2 Agile software development

2.2.1 Introduction

Agile software development, or agile methods, is an approach to software
development where the unpredictable nature of software requirements
is embraced. Compared to traditional, waterfall software development,
much less emphasis is put on specifying requirements and designing the
system up front. The agile process is divided into short sprints that deliver
complete software increments, and the software requirements are allowed
to change between sprints. This allows organizations that use agile methods

14

CHAPTER 2. LITERATURE REVIEW 15

to respond both to a rapidly changing environment and to new knowledge
discovered during development.

Although many of the ideas that contribute to agile methods were intro-
duced already during the last decades of the 20th century, agile software
development was unified under a single set of values and principles in
the agile manifesto in 2001 (Beck et al., 2001). This manifesto, signed by
multiple software development veterans, encouraged valuing:

“Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan”

Also, the manifesto introduced twelve principles for agile software
development. These principles encourage, among other things:

• early, continuous and frequent delivery of valuable software
• a welcoming of emerging requirements, architectures and designs
• frequent collaboration between developers and business people
• empowered and motivated teams
• face-to-face communication
• sustainable development and a constant pace
• technical excellence and a pursuit of simplicity
• continuous retrospection and process improvement

The specific agile process and practices varies depending on the method-
ology used. The most common methodologies include Scrum (Schwaber
and Sutherland, 2011) and Extreme Programming, or XP (Beck and Andres,
2004). Out of these two, Scrum focuses mostly on the project management
aspects of agile development, while XP also includes a set of technical
practices.

2.2.2 Adoption of agile methods in industry

Agile methods have become a very common approach to software devel-
opment during the last few years. In a 2008 survey among 642 readers
of a software development journal (Ambler, 2008), 69% of respondents
indicated that their organization was using agile methods in one or more
projects. This was the same adoption rate as the survey found the previous
year.

CHAPTER 2. LITERATURE REVIEW 16

Factor Improved No change Worsened
Productivity 82% 13% 5%
Quality 77% 14% 9%
Stakeholder satisfaction 78% 15% 7%
Cost 37% 40% 23%

Table 2.1: The effect of agile methods on productivity, quality, stakeholder
satisfaction and cost (Ambler, 2008).

In 2010, the software company VersionOne conducted a large survey
on the usage of agile methods in software development organizations (Ver-
sionOne, 2010). Among the 4770 participants from 91 countries, most were
project managers or other managerial staff involved in software develop-
ment. The survey found that 90% of respondents worked in organizations
that use at least some agile development practices, and 40% worked in
organizations that have been practicing agile for more than two years. Out
of these 58% employed Scrum while 17% employed a Scrum/XP hybrid,
clearly making Scrum the dominant methodology at this time. The top
three reasons for adopting agile methods were accelerated time to market
(with 37% reporting that it was of the highest importance), enhanced ability
to manage changing priorities (36%) and increased productivity (27%).

2.2.3 The benefits and limitations of agile methods

Evidence on the benefits of agile methods comes primarily from surveys, al-
though there are also some empirical studies. Surveys have generally found
very positive results. The study by Ambler (2008) presented in Section 2.2.2
asked participants about the effect of agile methods on productivity, quality,
stakeholder satisfaction and cost. The results are shown in Table 2.1.

The VersionOne (2010) survey also asked participants about the per-
ceived benefits of adopting agile methods. The top five factors where
participants reported either improvement or significant improvement were
ability to manage changing priorities (87%), project visibility (78%), pro-
ductivity (74%), team morale (71%) and time to market (70%). The only
factors where only a minority reported improvement were reduced costs
(39%) and the ability to manage distributed teams (34%). No factor had
more than 8% of respondents reporting worse or much worse results. Many
respondents did, however, report concerns about adopting agile. The top
three concerns were loss of management control (36%), lack of upfront
planning (33%) and management opposition to change (32%).

Although these results are encouraging for agile methods, there is a risk
of selection bias in surveys like this. There is less empirical evidence on the

CHAPTER 2. LITERATURE REVIEW 17

benefits and limitations of agile methods. A systematic review of all agile
studies up to and including 2005 found 36 empirical studies (Dybå and
Dingsøyr, 2008). The review found benefits e.g. in customer collaboration,
handling of defects, team learning, estimation and the ability to think
ahead. There was also a tendency towards higher productivity and code
quality in agile methods, and both customers and developers generally
were more satisfied with agile methods. Limitations reported were that
the agile methods did not work out is some cases, that they worked best
with experienced teams and that there was too little attention to design
and architecture. These findings should be read cautiously, as the authors
reported that the strength of the empirical evidence is very low.

2.2.4 Scrum

As indicated in Section 2.2.2, the most used agile methodology today is
Scrum. Scrum was developed by Ken Schwaber and Jeff Sutherland in the
early 1990s, and has been described e.g. by Schwaber and Beedle (2001)
and Schwaber (2004). The most up to date description of Scrum is in the
Scrum guide (Schwaber and Sutherland, 2011).

The guide describes Scrum as a framework for developing and sustain-
ing complex products. This is made possible by a focus on three pillars:
a transparent process, frequent inspection of progress, and adjustment of
the process when it deviates from the goals. Scrum defines roles, arti-
facts, events and rules, and each of these has the end goal of providing
transparency and opportunities for inspection and adaption.

The roles defined in Scrum are the product owner, the development team
and the scrum master. Together, these make up the scrum team. The re-
sponsibility of the product owner is to make sure that the product is being
developed in the best possible direction. Within the team, the product
owner therefore has final authority over prioritizing requirements. The
development team is responsible for developing the product. Although
each developer may focus on what she is best at (e.g. design, architec-
ture or testing), the development team as a whole is cross-functional and
self-organizing. This means that there are no predefined roles or titles,
and that the team instead organizes itself to collectively produce the best
results. Finally, the scrum master is responsible for ensuring that the Scrum
is sufficiently understood and correctly implemented.

The three primary artifacts in Scrum are the product backlog, the sprint
backlog and the definition of done. The product backlog is a prioritized list of
requirements, and is the responsibility of the product owner. It is constantly
updated and improved by the product owner, with the help of the team.

CHAPTER 2. LITERATURE REVIEW 18

The development team is responsible for estimating the effort required to
complete backlog items. The sprint backlog is the set of items selected for
development in a given sprint. The definition of done specifies the quality
requirements, i.e. what is required from a product increment in order for it
be considered done.

The Scrum process is structured into sprints that are two to four weeks
in length. In each sprint, an increment of working software is developed.
Each sprint has four types of events: a planning meeting, a review, a ret-
rospective and daily scrums. In the planning meeting, the product owner
presents the goal for the sprint and the most important requirements, and
the development team chooses what it can commit to. In the review, the
scrum team presents the results of the sprint to stakeholders, and the team
and stakeholders together discuss what to do next. In the retrospective,
the team considers what went well during the sprint, and what could be
improved. Every day, in the daily scrum, each team member describes what
he has accomplished since the last meeting, what she intends to accomplish
next and whether there are any problem hindering her progress. One way
of visualizing the Scrum process is shown in Figure 2.1.

2.2.5 Extreme programming

Before the rise in popularity of Scrum during the past few years, extreme
programming (XP) was the most widely used agile methodology (e.g. Shine
Technologies, 2003), and as indicated in Section 2.2.2 it is still used but most
often in combination with Scrum. Extreme programming was created by
Kent Beck and is presented by Beck and Andres (2004).

In comparison to Scrum, XP is more focused on describing a set of val-
ues, principles and best practices than on describing a process framework.
Most of these practices can be incorporated into Scrum, which is probably
why hybrids are common. The core values of XP are communication within
the team, a strive for simplicity in solutions, the right amount of feedback, a
courage to speak truths, discard failures and seek answers and respect within
the team and for the project.

XP describes roughly a dozen principles and two dozen practices. Of
the practices, about half are categorized as primary. These include:

• team practices such as cross-functional teams, a sustainable pace of
work, sitting together and clearly showing project information in the
workspace

• planning practices such as weekly iterations for development, quar-
terly iterations for longer term planning, writing requirements as user

CHAPTER 2. LITERATURE REVIEW 19

Sprint 1

Sp
ri

nt
 b

ac
kl

og

Pr
od

uc
t b

ac
kl

og

Sprint 2

Sp
ri

nt
 b

ac
kl

og

Sprint 3

Po
te

nt
ia

lly
 r

el
ea

sa
bl

e
pr

od
uc

t i
nc

re
m

en
t

Sp
ri

nt
 b

ac
kl

og

Sprint 4

Sp
ri

nt
 b

ac
kl

og

Po
te

nt
ia

lly
 r

el
ea

sa
bl

e
pr

od
uc

t i
nc

re
m

en
t

Po
te

nt
ia

lly
 r

el
ea

sa
bl

e
pr

od
uc

t i
nc

re
m

en
t

Pr
od

uc
t b

ac
kl

og

Pr
od

uc
t b

ac
kl

og

Figure 2.1: In Scrum, items in the product backlog are turned into po-
tentially releasable product increments in two to four week long sprints.
Development is done in the order of the backlog items, from top to bottom.

CHAPTER 2. LITERATURE REVIEW 20

stories and including slack in the schedule
• programming practices, such as programming in pairs, writing tests

first, designing the system in small increments and integrating and
testing the whole system quickly and frequently

2.2.6 Agile requirements

Gathering and specifying requirements efficiently has long been one of
the most important problems in software engineering. At the core of agile
methods lies the idea that all requirements cannot be known in advance,
and different agile methodologies therefore propose various methods for
managing changing requirements.

As described in Section 2.2.4, in Scrum all requirements are listed in the
product backlog, which is in essence a prioritized list of work to be done.
Pichler (2010) describes the four central qualities of a successful product
backlog with the acronym DEEP. First, the backlog is detailed appropriately.
This means that the items with highest priority are sufficiently detailed to
allow development to start, while items further down on the backlog are
vaguer. This allows details to be specified at the latest possible moment
with the best available information, which minimizes wasted up-front
planning.

Second, the backlog items are estimated. This allows the product owner
to make necessary trade-offs between items. Third, the backlog is emergent,
which means that it is never set in stone. Rather, items are constantly added,
removed, modified and reprioritized. Fourth, the backlog is prioritized. The
items on top are developed first, and then removed from the backlog

Scrum does not specify any particular format for backlog items. One of
the most common formats is user stories, which originated in XP, and are
described by Cohn (2004). Stories have three important features. First, they
are written from the perspective of the end user, and only describe features
that are valuable to her. This means that purely technical requirements
should not be written as stories. Second, they are on purpose lightweight,
and require conversation between the product owner and the developers
to cover all the details. Third, details are written as acceptance tests. This
makes it easier to determine if a story is done.

Estimating the effort needed to complete requirements has long been
a problem in software engineering, and as a result of this many projects
have traditionally overrun their schedules, sometimes by wide margins
(Moløkken and Jørgensen, 2003). Cohn (2004) describes story points as a
method of estimating effort for user stories. Story points differ from many
traditional methods in that they are relative, not absolute. In the beginning

CHAPTER 2. LITERATURE REVIEW 21

of a project, a story point can be thought of as some absolute unit, e.g. an
ideal development day, but further on story points are only compared with
the points in previous stories. Story points are estimated collectively by
the development team. The amount of story points a team completes per
sprint is called the velocity, and the velocity of previous sprints can be used
to estimate the stories that can be done in future sprints.

2.3 Usability and interaction design

2.3.1 Introduction

People use software to aid them in a wide variety of tasks, and the primary
concern of any software development project has to be to provide valuable
functionality that allows people to achieve their goals. Just providing the
functionality is seldom enough, though. Users and customers will prefer
software that is easy to learn and remember, efficient to use and leaves
them satisfied at the end of the day. This collection of quality attributes,
describing how well rather than whether users can achieve their goals, is
commonly called usability.

Authors differ in the specific methods they suggest for creating usable
interactive products and services. Most processes share common themes,
however, including understanding users through research, creating and
evaluating designs with real users, and iteratively refining designs based
on the findings of the evaluations. Different authors also use different
names to refer to this process. In this thesis the primary term used will be
interaction design (e.g. Cooper, Reimann, and Cronin, 2007). Other common
terms include usability engineering (e.g. Nielsen, 1993), user-centered
design (e.g. Norman, 2002), human-centered design (e.g. ISO 9241-210),
and user experience design (e.g. Garrett, 2011).

2.3.2 Usability

To understand how to improve usability, we must first understand what
usability is. The term is defined in an ISO standard (ISO 9241-11) as:

“The extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and sat-
isfaction in a specified context of use.”

While this is precise, and is the definition used in this thesis, a more
everyday definition may give a better understanding of the concept. Ac-
cording to Krug (2006),

CHAPTER 2. LITERATURE REVIEW 22

“usability really just means making sure that something works
well: that a person of average (or even below average) ability
and experience can use the thing—whether it’s a Web site, a
fighter jet, or a revolving door—for its intended purpose with-
out getting hopelessly frustrated.”

To better understand usability, it is useful to think of it as made up
of different components. The ISO standard includes three components:
effectiveness, efficiency and satisfaction. Nielsen (1993) further divides
effectiveness into three subcomponents when he, in his popular definition,
defines usability as:

• Learnability, i.e. how quickly a user can learn to use a product or part
of a product the first time she encounters it. This component is most
important for novice users.

• Memorability, i.e. how well a user can relearn a product after a period
of not using it. This component is important for causal users who use
the product intermittently.

• Few and noncatastrophic errors, i.e. how few errors a user makes while
using the product, and how easy these errors are to discover and
recover from.

• Efficiency, i.e. how quickly a user can use the product once she has
reached a sufficient level of expertise. This component is most useful
for expert users.

• Satisfaction, i.e. how pleasant the use of the product is for a user.

2.3.3 User experience

A related concept to usability is user experience (UX). Although it is some-
times used synonymously with usability, more often it is used to encompass
the entire experience a user has with a product, including qualities that
go beyond the components of usability. Jordan (2002) presents the user
experience as a consumer hierarchy of needs with functionality at the base,
usability in the middle and pleasure at the top. This implies that high usabil-
ity is necessary but not sufficient for a good user experience. Beauregard
and Corriveau (2007) describe user experience as the emotions, thoughts
and attitudes that arise when a user interacts with a product. Although this
thesis focuses on the more well-defined concept of usability rather than on
user experience, it is important to keep in mind that the two concepts are
related, and that most of the methods that contribute to usability therefore
also contribute to user experience.

CHAPTER 2. LITERATURE REVIEW 23

2.3.4 The benefits of usability

The cost of usability consists of the increased design and development
resources needed for interaction design practices. The benefits tend to
be harder to quantify, but consist both of increased value to customers
because of higher user productivity and satisfaction, of decreased cost to
the company due to lesser need for training and support, and in some
cases of lower development costs when interaction design helps avoid the
development of unnecessary or unwanted functionality.

While the costs are relatively easy to quantify, the benefits are less so,
because they depend to a large degree on the type of software developed
(e.g. e-commerce site, application or intranet) and the business model
employed the company. Nielsen (2003) collected data from 863 website
design projects and concluded that a best practice is to devote about 10%
of a projects budget to usability. He found that this investment on average
increased sales and conversion rates by 100%, traffic and visitor counts
by 150%, user performance and productivity by 161% and use of target
features by 202%. This averages to an increase in usability of 135%. More
recently, Nielsen (2008b) conducted a new survey, in which he found that
usability budgets still were around 10% in companies that employed us-
ability practices, and that this investment now led to an average increase in
usability of 83%, lower than five years earlier but still high.

2.3.5 Interaction design

The ideal process for creating usable products is by no means settled, and
it includes a certain amount of creativity that is hard to specify. Over the
years, however, several practices have proven successful. In a classic article,
Gould and Lewis (1985) recommend three central principles for achieving
usability:

• Early focus on users and tasks. The designer should understand who
the intended users of the design are, how they behave, and what kind
of work they perform.

• Empirical measurements. Simulations and prototypes should be used
early in the process to observe actual use of the design by the intended
users.

• Iterative design. Usability problems should be fixed, and this requires
an iterative process of design, evaluation and redesign.

Beyer and Holtzblatt (1998) describe a process they call contextual design.
The process consists of gathering data about users with contextual inquiry,

CHAPTER 2. LITERATURE REVIEW 24

a method where the designers observe the work of users and interview
them in their natural work environment. The gathered data is modeled
using work models, which describe work processes, artifacts, environments
and the flow of information. Based on these models, the design is created,
prototyped and evaluated, and this process is iterated until the design is
done.

Cooper (2004) and Cooper, Reimann, and Cronin (2007) describe an
interaction design process called goal-directed design. The focus of goal-
directed design is to understand and fulfill the goals of users, and like in
contextual design, this is done by observing and interviewing users in
their natural environment. The main difference is that goal-directed design
models the users using personas, which are personifications of groups of
users. Personas are concrete and have fictional names and biographies,
but their goals, needs and behaviors are based on the gathered data. The
benefit of using personas is that they make the users more real in the minds
of designers and developers, which allows them to focus better on actual
rather than stereotypical users.

In addition to user research and modeling, Cooper, Reimann, and
Cronin (2007) describes how design is done as part of the interaction design
process. This process is also elaborated by Goodwin (2009). First, scenarios
are written. These are narratives that describe personas interacting with
the product in typical ways. Based on the scenarios, the designers sketch
an interaction framework, which defines the main functional and data
elements and their relationships. Further, a visual design framework is
created, the design is refined and evaluated, and the process is iterated
until the result is acceptable.

Nielsen (2003) describes a process that is more focused on evaluation
than on research and design. The two main methods for evaluation are
expert reviews, where the usability professional performs typical tasks with a
design while looking for problems that break common usability guidelines
or heuristics, and usability testing, where representative users perform
typical tasks with a design while thinking aloud about what they do.

2.3.6 Similarities and differences to agile methods

There are some similarities between interaction design and agile methods,
because both movements have recognized some of the same problems in
traditional software development. One similarity is the focus on evaluation
and iteration. However, agile methods emphasize iterating the working
software after evaluating its functionality with customers, while interaction
design emphasizes iterating the design after evaluating its usability with

CHAPTER 2. LITERATURE REVIEW 25

end users. Also, in many interaction design processes (e.g. Goodwin,
2009) the designers complete most or all of the design before development
begins, and document it in elaborate design specifications. This is clearly
not compatible with agile principles.

Another similarity is the focus on users, which is primary in interaction
design but also important in agile methods. Agile practices such as user
stories emphasize that requirements should be specified from the viewpoint
of the user, and their concrete value to the user should be clarified. However,
as Nielsen (2008a) points out, interaction design and usability are still
secondary, and are often left to happen as a side product of the coding.

Two case studies illustrate the frictions between interaction design and
agile methods. In a controlled XP project using most of the XP practices,
Jokela and Abrahamsson (2004) found that the responsibility for usability
was transferred to the on-site customer (product owner), and that almost no
usability engineering practices were employed by the developers. Federoff
and Courage (2009) describe the adoption of agile methods by 30 develop-
ment teams at Salesforce.com. Initially, six months after the adoption, only
24% of the user experience team members were satisfied with the change.
They expressed several concerns, such as difficulties with identifying target
users and their needs in a just-in-time process, with achieving a holistic
design in incremental development, and with dividing the user experience
team effort between the different development teams.

As shown in sections Section 2.2.3 and Section 2.3.4, agility and a focus
on usability are both important for most software development projects to
be successful. This section has shown that integrating the two approaches is
not straightforward, and has discussed some of the main conflicts between
interaction design and agile software development. The following sections
will set out to find solutions to them.

2.4 Interaction designers on agile teams

2.4.1 Introduction

One of the core practices in agile software development is that there is
a single person on the team, the product owner (or internal customer in
XP) that either in fact is a customer of the product, or more commonly
is someone who understands and represents the actual customer. The
product owner has the authority to prioritize requirements, which ensures
that the team keeps focused on what is most valuable for the customer,
rather than on what seems important to the developers, who seldom have

CHAPTER 2. LITERATURE REVIEW 26

the possibility to understand customer needs equally well.
While this team structure is not bad from the point of view of achieving

usability, Beyer, Holtzblatt, and Baker (2004) describe some of the reasons
why it often is insufficient. First, the product owner may have a hard
time representing users when the users of a product are not the same as
the customers, which is the case in most enterprise software. Second, as
the product owner works intensely with the development team and the
product, he will become very familiar with how the product works and
also to some degree how it is implemented, and this will make it harder for
the product owner to approach the product from the point of view of the
user, and to give sufficient priority to usability requirements. Third, even
in the case when the product owner is an actual user of the product, there
is still the fundamental problem that people seldom can express what they
do and what they need. Listening to users rather than observing them is
not sufficient for high usability.

2.4.2 The interaction designer

Beyer, Holtzblatt, and Baker (2004) suggest that, in order to ensure a usable
product, design should be separated from development. This is also one of
the fundamental conclusions of Cooper (2004), who states that developers,
even when they do their best to keep the usability of the product in mind,
are too knowledgeable of the implementation of the product to view it as the
user does. Also, there is a conflict of interest between ease of use and other
concerns that are important to developers, such as ease of development
and maintenance. The solution is to introduce the role of the interaction
designer, whose primary responsibility is to ensure the usability of the
product.

Interaction design is a specific activity that has to be performed to create
high-usability products, and it will be performed implicitly by the devel-
opers if not explicitly by a designer. However, this does not necessarily
mean that one or more people on the team have to have the role of de-
signer and play no part in development. Fox, Sillito, and Maurer (2008)
identify three different approaches to design: the specialist, the generalist
and the specialist generalist. In the specialist approach, the designers are
concerned exclusively with interaction design. This is the designer role
used in traditional software engineering. In the generalist approach, there
is no specific designer, but the developers do the interaction design. Finally,
in the specialist generalist approach there are specific designers, but these
are also involved in development. This is similar to other roles in agile
teams, where developers may specialize in a certain area (e.g. architecture

CHAPTER 2. LITERATURE REVIEW 27

or testing) while still contributing to all aspects of development.

2.4.3 Organization structure and collaboration

Another question is how to manage multiple interaction designers within
an organization. According to Nielsen (2009a) there are two main types of
structures: the centralized structure and the distributed structure. In the
centralized structure the designers form a single functional team within the
organization. This allows better specialization within the team, more flexi-
ble resource allocation and better support for cross-cutting initiatives. In
the distributed structure, designers are assigned to individual projects. This
allows them to collaborate more closely with the developers. According to
Nielsen, the distributed structure is to be preferred in an agile organization,
because of the importance of designers and developers sitting together and
communicating actively. However, some organization-wide activities can
still be performed occasionally using a matrix structure.

Other studies tend to support this conclusion. In an observational study
of a large agile team where the developers and designers were located
separately, Ferreira, Sharp, and Robinson (2011) found significant problems
in communication, with developers not getting enough feedback from
designers, and both groups being defensive about their work. Cohn (2010)
also stresses the importance of designers working closely together with
developers and considering themselves part of the agile team.

However, there is not always enough design resources to have one
or more dedicated designer per team. At Salesforce.com, Federoff and
Courage (2009) describe how designers initially worked with as many as
four development teams at once. As this proved problematic, the teams
were restructured so that designers worked on at most two teams at a time,
but this meant some development teams no longer had designers on them.
Instead, designers allocated two hours each weeks during which these
teams could consult designers. According to Federoff and Courage, this
was a successful compromise.

2.4.4 Cross-functionality

A central idea in agile development is that of cross-functional teams, where
members may specialize but also perform tasks beyond their specialty
(Cohn, 2010), and where all members work for the common good of the
team. In Scrum, for example, the only two recognized team roles are the
product owner and the scrum master; all other team members are con-
sidered developers. Even though the role of interaction designer may be

CHAPTER 2. LITERATURE REVIEW 28

different enough to warrant a special role, as in the specialist approach
described above, steps can still be taken to increase the developers’ under-
standing of design and the designers’ understanding of development.

Ungar and White (2008) present the design studio as one method to
increase this knowledge transfer. In the design studio, designers, develop-
ers and possibly other stakeholders come together for a day to iteratively
sketch, present and critique solutions to particular design problems that
have been selected in advance. In their case study the authors found multi-
ple benefits in this method, including role sharing and knowledge transfer,
better team cohesiveness, a better shared understanding of the design
vision, and an opportunity to educate team members about interaction
design. Federoff and Courage (2009) also report success with the design
studio.

2.5 Interaction design in the agile process

2.5.1 Introduction

One of the most important sources of conflict between agile methods and
interaction design is the question of how to integrate the two into one
process, and especially the question of how much (if any) up-front design
should be done. While many interaction designers traditionally have been
of the view that the user should be understood and a solution designed
before development begins, agile proponents have strongly avoided any
kind of extensive up-front design or analysis work (so called big design
up front). This conflict is exemplified in a 2002 debate between Kent Beck
and Alan Cooper (Nelson, 2002), two of the main proponents of agile
development and interaction design, respectively. In the debate, Cooper
holds fast to the idea that much of the iterative development in agile
methods is unnecessary if proper interaction design is done up-front, while
Kent opposes this view, stating that while he agrees with the techniques,
he disagrees with the process.

That debate was ten years ago, and since then solutions to the conflict
have emerged in the literature. Most of these revolve around two ideas:
parallel tracks, where design is being done one or more sprints ahead of
development, and little design up front, where some preliminary envision-
ing, design and user research is done before development begins. Five
years after the debate, Cooper, Reimann, and Cronin (2007) write that they
no longer believe that all design work should precede development. In-
stead, “all aspects of a product should be designed before they are built.” In

CHAPTER 2. LITERATURE REVIEW 29

essence, most of the design work can be moved into the iterative process, as
close before the development as possible, to improve agility while retaining
design.

2.5.2 Parallel design and development tracks

The most widely recommended method for successfully integrating in-
teraction design with agile methods is the parallel tracks approach. First
described by Miller (2005) and Sy (2007), both working at Autodesk, the
method prescribes dividing the process into parallel tracks, with develop-
ers working in one track and interaction designers in the other. During a
sprint, the interaction designers

• Conduct usability tests with the product of the previous sprint
• Work on the design for the next sprint
• Gather customer data for the sprint following the next one

The exception is the first sprint, where initial planning and user research
is done, but no development. The interaction designers do not work sep-
arately from the developers, however, but participate in the daily scrum
meetings and interact with the developers frequently. This allows the devel-
opers to better understand and give feedback on how the design develops,
and allows the interaction designers to help developers implement the
design. The parallel tracks approach is illustrated in Figure 2.2.

Sy (2007) lists several benefits with this method compared to traditional
user-centered design. First, usability investigations are conducted early
enough so that their results can be taken into account in the same release.
Second, the most important parts of the product are designed first, and
there is less risk of putting effort into designs that will become obsolete.
Third, more of the product is actually designed, and the implementation of
the design is more true to the design intent and overall better.

Budwig, Jeong, and Kelkar (2009) describe how they, when introducing
an agile usability process at PayPal, first tried doing design and develop-
ment in the same sprint, but found this to be unsuccessful as it did not give
enough time for the design. They adjusted the process so that designers
work one or two sprints ahead of development, and found this to work
well. Federoff and Courage (2009) also describe how they successfully
implemented the parallel tracks approach at Salesforce.com, because they
found that there was not enough time for design, implementation and us-
ability testing in one sprint. In addition, in special cases where the product
is new and there is much uncertainty in the design, Federoff and Courage

CHAPTER 2. LITERATURE REVIEW 30

– Implement high
development cost, low

design cost features

– Plan and gather
customer data

– Design for sprint 2
– Gather customer

data for sprint 3

Sprint 0

Sprint 1 Sprint 2 Sprint 3

Interaction designer track

Developer track – Implement designs – Implement designs

– Test sprint 1 code
– Design for sprint 3
– Gather customer

data for sprint 4

– Test sprint 2 code
– Design for sprint 4
– Gather customer

data for sprint 5 Data Data

Figure 2.2: Interaction design and development can be done in parallel
tracks, with design and customer research being done before the develop-
ment sprint and usability testing being done after the development sprint
(adapted from Sy, 2007).

recommend doing the design an entire release instead of just a single sprint
ahead.

The parallel tracks approach is recommended by Cohn (2010), who
states that he has seen this approach adopted in dozens of projects. Cohn
emphasizes that, even while working in separate tracks, it is essential that
interaction designers and developers consider themselves part of the same
team. The top priority for interaction designers is therefore, according to
him, to make sure that the team delivers what it has committed to for the
sprint.

Nielsen (2008a) also recommends using parallel tracks, based on a
survey of 105 designers and developers and 12 case studies. He states that
quick usability testing is compatible with the approach and can be done
even weekly. According to Nielsen, ideally foundational user research
should be done before development begins, and may even be done outside
the scope of any single project.

2.5.3 Little design up front

The authors cited in the previous section all state that, while much design
can be moved to the sprint prior to development, some up-front design be-
fore development is required to maintain a consistent vision of the product.
In fact, in a systematic review of agile usability studies, Silva et al. (2011)

CHAPTER 2. LITERATURE REVIEW 31

found that little design up front was the most commonly used practice.
While any up-front design may seem problematic from the point of view
agile development, it is worthwhile to keep in mind that the design referred
to in the agile literature is mostly technical and not interaction design, and
that some agile authors (e.g. Pichler, 2010) put emphasis on crafting a good
product vision before development begins, in order to keep the project
focused and the product cohesive.

Sy (2007) presents the idea of a sprint zero, to be held at the beginning
of each release. This sprint is of the same length as the other sprints, i.e.
“weeks rather than months,” and includes the activities of gathering data to
refine the vision of the product and the goals of the release, conducting inter-
views or contextual inquiries with actual or potential users, and modeling
the users and their workflows with models such as lightweight personas
or scenarios. These activities vary somewhat depending on whether the
release is the start of a new project or an update to an existing product.

Other authors also recommend little design up front. Ferreira, Noble,
and Biddle (2007b) found that up-front design is common in agile projects,
and concluded that interaction design should be done before development
when this reduces risk. Nielsen (2008a) states that the other main recom-
mendation on agile usability, in addition to doing design one sprint ahead,
is to create a coherent vision during an initial sprint and maintain it during
annual or semi-annual design vision sprints. Budwig, Jeong, and Kelkar
(2009) also recommend incorporating quarterly design vision sprints in the
normal cycle.

A question raised by these vision sprints is what developers should be
doing when the product owner and designers are occupied with creating
the vision and doing user research. To an extent it is important that the
developers are involved in this work, especially in creating the vision to
make sure that it is shared within the entire team (Pichler, 2010). Beyer,
Holtzblatt, and Baker (2004) also state that developers may participate in
some of the user research activities. Finally, developers can start setting up
or improving the development environment (especially in the beginning
of a new project), refactoring the code to improve its quality (especially
later in a project), or, if possible, implement features that have minimal user
interfaces but require much development effort.

CHAPTER 2. LITERATURE REVIEW 32

2.6 Interaction design activities in agile projects

2.6.1 Introduction

Interaction design can be thought of as involving three main types of activ-
ities: user research, design, and usability evaluation. While in any process
these activities are to some degree intertwined, e.g. usability evaluations
can be used both during design and as a research method, it is still useful
to think of these as separate activities. The previous section explored how
these activities should be integrated into the agile development process.
This section continues by exploring in more detail how these activities
should be performed in a manner suited for agile methods.

2.6.2 User research and modeling

To be able to design products that are usable, the interaction designer must
first understand the user: her goals, her needs, her skills and her work.
While some understanding of users can be gained by observing them in
usability tests (see Section 2.6.4), other techniques are more useful when
the goal is to design new functionality rather than to improve existing one.
The methods for understanding users are known as user research, and
the methods for communicating this understanding to the team and other
stakeholders are called user modeling.

Two of the most common user research techniques are contextual in-
quiry and interviews. Contextual inquiry was first introduced by Beyer
and Holtzblatt (1998), and involves observing the user acting in her natural
environment, i.e. in context, while at the same time interviewing her and
asking clarifying questions about what she does. Contextual inquiry is a
useful technique when the goal is to understand how users actually behave,
rather than how they think they behave. This is because people are often
incapable of reporting their work and their behavior, and sometimes also
their needs, as these have become unconscious. Ordinary interviews, on
the other hand, require less time and are better suited when the goal is to
understand the conscious opinions of users rather than their behavior.

Beyer, Holtzblatt, and Baker (2004) describe one approach to user re-
search, adapted to agile development. First, when the project vision is
created, the one or two user roles that the product focuses on are identified.
Then, contextual inquiries are performed with at least three users represen-
tative of each role. The issues found are modeled with affinity diagrams,
and the current work processes of users are modeled with sequence models.
Multiple team members, including the product owner and developers, can

CHAPTER 2. LITERATURE REVIEW 33

participate in the contextual inquiries. According to the authors, one week
of research can be sufficient for smaller releases, while large projects or
those introducing disruptive technologies require more time.

While Cooper, Reimann, and Cronin (2007) agree with primarily using
contextual inquiry to understand users, they suggest modeling users with
so called personas. A persona is an archetypal user that represents a partic-
ular role. In contrast to a description of a role, the persona has a fictional
name, photo, and some basic demographic information. The purpose of
this is to make the users more concrete in the minds of developers and
designers, and easier to empathize with. Although personas contain some
fictional details, the actual goals, needs, behavior and work described in
personas are based on the user research. Cohn (2004) discusses replacing
user roles with personas in user stories. He recommends creating personas
only for the one or two most critical roles, and cautions against writing
personas unless sufficient user research has been done to base the persona
descriptions on data.

2.6.3 Design and prototyping

While the actual methods of coming up with design ideas (e.g. sketching)
are not that relevant from the point of view of the agile development
process, the artifacts that are produced to communicate the design to the
product owner, developers and other stakeholders are. Interaction design in
traditional software development produces artifacts such as detailed design
specifications. Because documents are deemphasized in agile development,
most authors recommend replacing these artifacts with lightweight artifacts,
such as low-fidelity paper prototypes, and spending more time in face-to-
face discussions. In fact, in their systematic review of agile usability studies,
Silva et al. (2011) found that using low-fidelity prototypes was the third
most common practice (after little design up front and close collaboration).

While there are many lightweight artifacts for communicating design,
and different artifacts are suited for different purposes, prototypes have
the benefit of both communicating the design and allowing exploratory
usability testing (see Section 2.6.4). Snyder (2003) describes four dimensions
of prototype fidelity: breadth, i.e. how much functionality is covered, depth,
i.e. how much the functionality has been fleshed out, look, i.e. how much
the prototype looks like a finished product, and interaction, i.e. the extent
to which the prototypes allows realistic input and output methods. Paper
prototypes are prototypes that are hand-drawn or drawn on the computer
and printed out. They are generally narrow but deep, i.e. they allow only
specific functionality but they cover the entire path of that functionality.

CHAPTER 2. LITERATURE REVIEW 34

Both looks and interaction are low-fidelity. Compared to this, working
prototypes (often called high-fidelity prototypes) run on the computer, and
therefore provide higher-fidelity interaction and looks.

Several studies indicate that low-fidelity prototypes are sufficient for
finding usability problems early in the design. Hall (2001) summarizes
earlier studies and concludes that “it is possible to achieve good design
information from user testing of low-fidelity prototypes early in the design
process”. Walker, Takayama, and Landay (2002) found that low- and high
fidelity prototypes are equally good at uncovering usability issues and
Sefelin, Tscheligi, and Giller (2003) also found that both types produce
almost the same quantity and quality of findings.

In addition to allowing usability testing before coding starts, prototypes
can also be used to communicate the design to developers and other stake-
holders. Sy (2007) describes how, when moving to agile, they replaced
design specification with prototypes (both low- and high-fidelity). These
prototypes are presented in person to developers, and typical workflows
are demonstrated. Federoff and Courage (2009) also explain that they re-
placed the need for specifications with working prototypes created by the
designers. Chamberlain, Sharp, and Maiden (2006) concluded, based on a
field study of three projects, that one of the five most important principles
in agile usability is the willingness of designers to provide developers with
prototypes.

2.6.4 Usability evaluation

One of the central ideas of interaction design is that actual or representative
end users should be involved in the development process to evaluate
the usability of designs or of the working product. The most important
method for this is the usability test, in which a user performs typical
tasks with a prototype or a product while thinking aloud. Rubin and
Chisnell (2008) identify three main types of usability tests suitable to fast-
paced development: exploratory tests, assessment tests and validation tests.
Exploratory (or formative) tests examine how well initial design concepts
work, and are usually done with low-fidelity prototypes. Assessment (or
summative) tests examine how well the design has been implemented
in working code. Finally, validation (or verification) tests measure the
usability to examine whether a product fulfills certain usability standards.

Sy (2007) describes how, in the parallel tracks approach, exploratory
tests can be done rapidly with prototypes during the sprint before imple-
mentation, to improve the design before coding starts. Assessment tests
can be performed in the sprint after coding, to evaluate whether the de-

CHAPTER 2. LITERATURE REVIEW 35

sign has been implemented successfully. Because this requires many test
participants, Sy explains how they use internal users who share some char-
acteristics with the end users for some tests, and reserve external users for
those tests where they are absolutely necessary. In conclusion, Sy found
that, while exploratory tests can be done iteratively without an agile pro-
cess, assessment tests benefit greatly from agile development, as they can be
done earlier, and the results can be taken into account in the same release.

Beyer, Holtzblatt, and Baker (2004) also suggests both exploratory test-
ing of the design in the sprint before development, and assessment testing
of the working product after it has been coded. The authors stress that
exploratory testing with paper prototypes is more important than assess-
ment testing, because it aids in making sure the design is sound before
development begins, which minimizes the risk for expensive rework.

To be able to conduct exploratory usability tests rapidly within a sprint,
simplified usability techniques are necessary. Nielsen (2009b) describes
the essentials of discount usability engineering, which he first introduced
in 1989. In discount usability engineering, low-fidelity prototypes with
narrow functionality, usually paper prototypes, are created and tested
with three to five users in qualitative tests, where the focus is on finding
problems rather than gathering quantitative data. In addition, inspection
methods that do not involve end-users, such as heuristic evaluation, may
be performed. Nielsen (2011) recommends two iterations of testing, but
states that one iteration is better than none. Using discount techniques, he
states that tests can be conducted as often as weekly, so as long as there
are enough test participants, it is possible to conduct multiple rounds of
exploratory testing within a four-week sprint.

Medlock et al. (2002) describe an even faster method of exploratory
testing, called rapid iterative testing and evaluation (RITE). In RITE, tests
are scheduled with couple hour breaks between them, and usability prob-
lems are fixed as soon as they are discovered and a quick solution is found,
during the time before the next test begins. The prototype is therefore iter-
ated between the tests, so finding the same usability problem twice is not
as common. Also, the entire team participates in the test sessions, and in
identifying problems and coming up with solutions. Federoff and Courage
(2009) discuss how RITE has become almost the only testing method used as
Salesforce.com, because it is quick and involves the entire team in engaging
problem solving and not just passive observation.

Chapter 3

Methods

3.1 Introduction

This chapter describes the research methods used in the thesis. The goal
of the research was to find out what practices to introduce into the agile
software development process at the company in order to improve the
usability of its products, and the research approach selected for this end
was action research. This chapter therefore starts by describing action
research in Section 3.2. Next, in Section 3.3, the case is presented, including
descriptions of the case company, the case project and the project team.
After this, in Section 3.4, an outline of the research process follows. In
Section 3.5 the procedures for data collection and analysis are presented,
and in Section 3.6 ethical considerations and confidentiality are discussed.
Finally, in Section 3.7, the usability practices that were tested during the
research are presented.

3.2 Action research

Action research is described by Avison et al. (1999) as ”an iterative process
involving researchers and practitioners acting together on a particular
cycle of activities, including problem diagnosis, action intervention, and
reflective learning.” It is closely related to case study research (e.g. Yin,
2009), with the difference that the researcher actively participates in the
studied activities. As a method, it is therefore well suited for a research
project where a major goal is to improve the practices at a company, in
addition to creating scientific knowledge.

Runeson and Höst (2009) describe four research methodologies applica-
ble to software engineering research: survey, case study, experiment, and

36

CHAPTER 3. METHODS 37

action research. Like the case study, and in contrast to the survey and the
experiment, action research is primarily concerned with qualitative (and
not quantitative) data, and uses a flexible (and not fixed) research process
which can be changed during the course of the study as new findings
emerge. This is because both methods are interested in understanding phe-
nomena in context. They sacrifice the ability to explain causal relationships
or allow generalization from a sample. Instead, they provide a deeper
understanding of the phenomena under study. In software engineering,
where the context often is complex and varies widely between cases, these
methods are well suited.

Much of the research design for the thesis is based on the guidelines
presented by Runeson and Höst (2009) on case study research in software
engineering, because no equally useful set of guidelines exists for action
research. Except for the action intervention, case study research is very
similar to action research. Runeson and Höst also state that ”[for] the
research part of action research, these guidelines apply as well.”

3.3 Case description

3.3.1 The case company

Founded in 1991, Rapal Oy is a privately owned Finnish company special-
izing in producing information to aid the decision making of owners and
users of premises as well as constructors of infrastructure. This is achieved
by providing software as a service, complemented with consulting. Rapal
Oy has a staff of roughly 50 employees, and in 2010, the net sales amounted
to approximately e 4.6 million. (Rapal Oy, 2012)

The three products provided by Rapal Oy are Optimaze.net, Fore and
Forecast. Of these, Optimaze.net is the largest by sales. It includes web
applications for users of premises and owners of real estate. For building
users the product gives information about how their spaces are utilized,
how much they cost, and what their environmental impact is. For own-
ers the product allows the management of property holdings, including
contracts and invoicing.

3.3.2 The case project

While the current state analysis concerned the entire case company, the
action intervention was performed within a single software development
project at the company. The goal of the project was to create a new product,

CHAPTER 3. METHODS 38

Initial planning
approx. 10 weeks, not full time

Sprint 0
1 week

Release

Sprint 1
4 weeks

Development begins

Sprint 2
4 weeks

Sprint 3
4 weeks

Sprint 4
4 weeks

Sprint 5
1 week

Sprint 6
3 weeks

Testing
3 weeks

Paper prototyping,
prototype testing,

high-fidelity prototyping

High-fidelity
prototyping

Initial planning
approx. 10 weeks, not full time

Sprint 0
1 week

Release

Sprint 1
4 weeks

Development begins

Sprint 2
4 weeks

Sprint 3
4 weeks

Sprint 4
4 weeks

Sprint 5
1 week

Sprint 6
3 weeks

Testing
3 weeks

Usability testing,
paper prototyping

Paper prototyping,
prototype testing

High-fidelity
prototyping

Paper prototyping

Too little user research,
too much high-fidelity prototyping

Initial planning
approx. 10 weeks, not full time

Sprint 0
1 week

Release

Sprint 1
4 weeks

Development begins

Sprint 2
4 weeks

Sprint 3
4 weeks

Sprint 4
4 weeks

Sprint 5
1 week

Sprint 6
3 weeks

Testing
3 weeks

No usability
testing or paper

prototyping

No prototype
testing

No usability
testing, important
interview too late

Figure 3.1: The case project schedule.

Optimaze.net Scenario, which would be related to but separate from the
main Optimaze.net product. Optimaze.net Scenario would be a product for
strategic facility planning that would allow customer organizations to get
an overview of the buildings they use, and to plan changes to their building
portfolios in order to improve utilization and reduce costs. In contrast to
the main product, Scenario was meant to work as a lightweight tool that
does not require an extensive deployment process, and therefore can be
taken into use by new customers easily. A secondary goal of the project was
to serve as the context for this research and thereby allow the team to try
out new usability practices that could later be employed in other projects.

Initial visioning and planning of the product started in the spring of
2011, and initial design started in the summer. Development began in
September, and the product was released in March 2012. The development
of the product followed the Scrum methodology and was divided into
nine sprints. These sprints included an initial one-week warm-up, four
four-week development sprints, one- and three-week development sprints
(the fifth four-week sprint was split into two due to special circumstances),
and a three week testing sprint. The project schedule is shown in Figure 3.1.

3.3.3 The project team

The project team consisted of a product owner, a scrum master, two devel-
opers and an interaction designer. The product owner had been responsible
for the entire Optimaze.net product for some time. There was one other
project under way at the same time, and the product owner therefore
worked only about half-time on the case project. The scrum master was
a former software developer at the company, but worked exclusively as
scrum master and did not do any development during the case project.
While he had some other responsibilities, he worked mostly full-time on
the case project.

The two developers were both quite new at the company. While one of
them had worked on agile projects before, neither had extensive experience
with agile software development prior to starting at the company. Neither

CHAPTER 3. METHODS 39

also had much experience with interaction design prior to the case project.
Both developers worked full-time at the project. Finally, the interaction
designer was the author of this thesis. He had previously worked as a front-
end developer at the company. While the amount of time dedicated to
research versus work (including the action intervention) varied somewhat
during the project, on average the interaction designer worked about half-
time on the project.

3.4 Research process

The research consists of three stages: the literature review, the current state
analysis and the action intervention. During the first stage, the goal was to
review the literature for information on how best to integrate interaction
design with agile software development. During the second stage, the goal
was to analyze the current state of usability at the case company and to
examine its particular problems and needs. During the third stage, the goal
was to test usability practices in the case project and to analyze how well
they worked. The usability practices tested in the action intervention are
described in Section 3.7.

The three stages did not occur serially; rather they overlapped each
other somewhat. For example, the literature review was not fully com-
pleted when the current state analysis began, and parts of the action in-
tervention were started before the current state analysis was completed.
The reasons for this were mostly practical. Because some of the usability
practices required several months to test in practice, and many required the
involvement of other team members, company employees and end users, it
was not possible to completely isolate them to a specific part of the project.
This arrangement also had the benefit that the research process could be
adjusted slightly as new information was gained.

3.5 Data collection and analysis

3.5.1 Interviews

The primary method of collecting data was semi-structured interviews
with company employees. During the current state analysis stage, nine
interviews were conducted with employees representing all the business
units in the company. During the action intervention stage, five interviews
were conducted with the project team members as well as the head of

CHAPTER 3. METHODS 40

development. Before each interview, questions were planned and written
down, but the order of the questions was in some cases varied, and some
questions were improvised during the interviews in order to clarify im-
portant subjects. The interviews varied from about 25 minutes to about
60 minutes in length. All interviews were recoded and transcribed. The
interview questions for the two interviews are available in Appendix A
and Appendix B.

The current state analysis and action intervention interviews were an-
alyzed in roughly the same way. After transcription, the interviews were
color coded by participant and divided into statements, where each state-
ment included a single message. The statements were then grouped by
topic. The topics mostly followed the predefined topics planned before the
interviews, but especially in the current state analysis interview the topics
were adjusted based on the interview data. Next, each topic was analyzed
for important messages. Messages were extracted, and each message was
annotated with the interview participants that had stated it in the inter-
view. When applicable, the messages were also grouped into negative and
positive messages.

3.5.2 Observation

In addition to the interviews, the researcher performed observation during
the action intervention, according to an observation framework, and wrote
down notes when interesting phenomena related to the usability practices
were observed. Also, the sprint retrospectives arranged at the end of each
sprint, where team members discussed what worked well and what did not
during the sprint, as well as suggest improvements, were well suited for ob-
serving and discussing how the team members had reacted to the usability
practices. At the end of the action intervention stage, the researcher wrote
down additional observations notes, based on the observation framework.
The observation framework is available in Appendix C.

The observation notes were analyzed by first combining all notes from
different sources, and combining similar notes. Next, the notes were
grouped according to the topics in the observation framework. The notes
were further grouped into positive and negative observations, where ap-
plicable. Finally, the most important observations in each group were
extracted based on the subjective view of the researcher.

CHAPTER 3. METHODS 41

3.5.3 Triangulation

Triangulation was used to improve the precision of the research. Data
triangulation was used in the interviews, as many people with different
roles were interviewed. The interview participants were consciously se-
lected to increase the diversity of viewpoints. In addition, methodological
triangulation was used to some extent, as both interviews and observation
were employed to collect data. Observer triangulation was not used, as
only one researcher collected the data and analyzed the results.

3.6 Ethical considerations and confidentiality

3.6.1 Informed consent

All participants in the interviews were asked verbally for their informed
consent. Participants were informed about the purpose and possible bene-
fits of the study, their roles in it, that participation is voluntary, that their
participation is anonymous, that there is a risk that they can be identified
based on their work descriptions or the answers they give to interview
questions, and that they can contact the researcher with any questions
they have during or after their participation. All participants agreed to
participate on these terms.

3.6.2 Confidentiality

The researcher had signed a confidentiality agreement when employed at
the company, restricting the publication of some of the research results.
However, there was a separate verbal agreement with the head of develop-
ment that none of the topics covered by the research were to be considered
confidential, as long as no customer or other sensitive information was
included.

3.7 Tested usability practices

In addition to the new interaction designer role (presented in Section 3.3.3),
two new usability practices were tested during the case project: paper
prototyping one sprint ahead, and usability testing of previous sprint
results. The practice of high-fidelity prototyping, which had been used in
earlier projects at the company, was also employed. All usability practices
were arranged by the interaction designer, although other team members

CHAPTER 3. METHODS 42

Initial planning
approx. 10 weeks, not full time

Sprint 0
1 week

Release

Sprint 1
4 weeks

Development begins

Sprint 2
4 weeks

Sprint 3
4 weeks

Sprint 4
4 weeks

Sprint 5
1 week

Sprint 6
3 weeks

Testing
3 weeks

Paper prototyping,
prototype testing,

high-fidelity prototyping

High-fidelity
prototyping

Initial planning
approx. 10 weeks, not full time

Sprint 0
1 week

Release

Sprint 1
4 weeks

Development begins

Sprint 2
4 weeks

Sprint 3
4 weeks

Sprint 4
4 weeks

Sprint 5
1 week

Sprint 6
3 weeks

Testing
3 weeks

Usability testing,
paper prototyping

Paper prototyping,
prototype testing

High-fidelity
prototyping

Paper prototyping

Too little user research,
too much high-fidelity prototyping

Initial planning
approx. 10 weeks, not full time

Sprint 0
1 week

Release

Sprint 1
4 weeks

Development begins

Sprint 2
4 weeks

Sprint 3
4 weeks

Sprint 4
4 weeks

Sprint 5
1 week

Sprint 6
3 weeks

Testing
3 weeks

No usability
testing or paper

prototyping

No prototype
testing

No usability
testing, important
interview too late

Figure 3.2: Usability practices tested during the case project.

participated in some of them. The usability practices tested during the
project are shown in Figure 3.2.

3.7.1 Paper prototyping

Paper prototyping was used in the initial planning stage, as well as in
sprints 3 and 4. During the planning stage, a paper prototype was created
covering roughly the functionality planned for sprints 1 and 2. This pro-
totype was tested in two rounds, first in June with four users and then in
July with three users. The tests were standard usability tests in which the
participants were asked to perform representative tasks using the prototype
while vocalizing their thoughts. Each test lasted for about one hour, and
ended with general discussion about the prototype. The second round
of testing was recorded on video. Both rounds of testing were analyzed
afterwards, and the prototype was improved based on the findings.

No paper prototyping was done during sprints 1 and 2. During sprint
3, a paper prototype covering the functionality planned for sprint 4 was
created, but the prototype was not tested with users. During sprint 4, a
paper prototype covering the functionality of sprints 5 and 6 was created
and tested with three users, using the same test procedure as the second
round of testing in July. Finally, in sprint 5, additional paper prototyping
was done for sprint 6 functionality.

The paper prototypes were primarily created by the interaction designer,
although the scrum master and product owner participated extensively in
sprints 3 to 5. While the scrum master and product owner participated in
the first round of testing, the second and third rounds were done only by the
interaction designer, who summarized the results for the rest of the team.
In addition to testing with end users, the prototypes were occasionally used
as the basis for discussions with internal domain experts.

The paper prototypes were used during backlog grooming sessions
as well during sprint planning, to help the developers understand and
estimate the user stories. In addition, they were available during the

CHAPTER 3. METHODS 43

Figure 3.3: Two examples of the paper prototype. The prototype on the left
is from sprint 3 and the prototype on the right is from sprint 5.

sprint, first in a folder and then, from sprint 4 onwards, on a wall in the
working area. When used for development (but not during the tests),
the prototypes were annotated with notes explaining the interaction of the
prototype. During the last sprint, they were also annotated with small notes
explaining which user story a particular part of the prototype belonged
to. Two examples of the prototype from different parts of the project are
shown in Figure 3.3.

3.7.2 Usability testing

Usability testing of a working product increment was done once during the
project, in sprint 3. The tests covered the functionality developed during
the first two sprints. Two users participated in the tests, which mostly
followed the same procedure as the paper prototype tests, with the users
given representative tasks and asked to perform them while thinking aloud.
The users’ actions were captured using screen recording software, and
notes were also taken. After the tests, the results were analyzed by the
interaction designer. Only the designer was present during the tests.

CHAPTER 3. METHODS 44

One of the two tests was also analyzed in common by the entire team.
The team first watched the recording of the test, and each member then
individually listed the most important usability problems. The problems
where combined and prioritized by the team, and were then either directly
taken into account in the design for the next sprint, or added as items to
the product backlog for the product owner to prioritize.

3.7.3 High-fidelity prototyping

High-fidelity prototyping using static HTML pages was done before de-
velopment started as well as in sprints 1 and 6. During the planning and
sprint 1, the high-fidelity prototype was used primarily to create the initial
visual design for the product. During the last sprint, it was used to finalize
the visual design for the product. The high-fidelity prototypes were only
used as aid for the developers. They were neither tested with end users nor
discussed outside the team.

Chapter 4

Results

4.1 Introduction

This chapter presents the results of the research. It is dived into two parts.
The first part, in Section 4.2, presents an analysis of the current state of
usability in the case company, based on interviews with company employ-
ees representing the three business units in the company. The analysis
covers the usability of current products, the strengths and weaknesses of
the software development process concerning usability, and views on the
future development of usability practices in the company.

The second part, in Section 4.3, presents an analysis of the action inter-
vention performed during the research, i.e. the usability practices employed
in the case project, based on interviews with all team members and the head
of development as well as observation during the research. The analysis
is dived into seven themes: usability activities in general, the interaction
designer role, the product vision and user research, the use of paper proto-
types, designing one sprint ahead, usability testing of sprint results, and
communication within the team.

4.2 Current state analysis

4.2.1 Interview participants

Nine interviews were conducted with Rapal Oy employees from all three
business units. The development and maintenance unit was most strongly
represented, with participants including three developers, a tester, a prod-
uct owner and the head of the unit. Two of the developers also worked as
scrum masters. A consultant and the head of training participated from the

45

CHAPTER 4. RESULTS 46

services unit and a sales specialist participated from the customers unit. Of
the participants, three were women and six were men.

The participants’ reported knowledge about the development process at
the company varied significantly, with participants from the development
and maintenance unit mostly reporting a good or excellent understanding
of the process, while other participants reported a general or somewhat
lacking understanding. Most of the participants reported at least an average
understanding of what usability means, with some mentioning that they
understood the concept very well. Usability methods were less familiar,
with only about half reporting an understanding of at least some of the
methods.

The participants were unanimously of the opinion that usability is very
important. Four participants said that it is “very important”, one that
it is “incredibly important”, two that it is “among the most important”
attributes of software, and one even that it is “the most important part of
software”. Several participants stressed that usability is important as a way
of differentiating a product from the competition and of gaining new and
retaining old customers. One mentioned that the user experience in general
is important.

4.2.2 Usability of the current products

Rapal Oy has two main software products, Optimaze.net for managing
facilities and Fore for managing infrastructure projects. Optimaze.net is fur-
ther divided into sub-products, aimed at different user roles. Optimaze.net
Moment is the main product and is used by organizations to manage and
optimize the use and costs of facilities, as well as to view floor plans. The
first version was launched in 2003. Among the later product, Optimaze.net
Channel is a product for reporting aimed primarily at management, and
Optimaze.net PM allows real estate owners to manage their property, rental
agreements and invoicing. Optimaze.net Scenario, as the case project for
the research, is not counted among the current products. As Moment is the
most widely used product, most answers related to the current products
primarily focused on it.

Overall usability of the current products

The interview participants’ evaluations of the usability of the current prod-
ucts of Rapal Oy were mixed, and ranged from “usable” to “poor” or “very
poor”, especially in the case of the oldest product, Moment. Seven partici-
pants immediately mentioned that there is improvement to be done, and

CHAPTER 4. RESULTS 47

Statement 2008 2009 2010
Optimaze.net Moment
Amount of respondents 79 83 67
I can easily find the information I need 5.1 5.2 5.3
The product is easy to use and user-friendly 4.8 5.0 5.1
The user interface is user-friendly and the layout is pleasing 5.0 5.2 5.2
Optimaze.net Channel
Amount of respondents 62 56 67
I can easily find the information I need 4.9 4.8 4.9
The product is easy to use and user-friendly 4.7 4.7 4.9
The user interface is user-friendly and the layout is pleasing 4.9 5.1 5.0

Table 4.1: Customer satisfaction data on the usability of Optimaze.net
Moment and Optimaze.net Channel. The survey uses a 1–7 Likert scale
with 1 indicating disagreement and 7 agreement.

four that Moment has a high learning curve or requires training. How-
ever, four participants mentioned that Moment is usable compared to the
competition, even “light-years ahead”, and that in the competing products
functionality is often found “behind a million buttons”.

The customer satisfaction data gathered by Rapal Oy give a view of
the usability of Optimaze.net Moment and Optimaze.net Channel. Out of
the seven questions asked about each product, three concern usability (see
Table 4.1). The survey is sent out to all users of the product, and uses a 1–7
Likert scale with 1 indicating disagreement, 4 indifference and 7 agreement.
The average score on the three usability-related questions has in the case of
Moment increased from 5.0 in 2008 to 5.2 in 2010, and in the case of Channel
increased from 4.8 to 4.9. While these results indicate a somewhat positive
view of the usability of the products, some interview participants expressed
concerns that the answers may not be representative of the average user,
as the ratio of respondents is quite low. It is also possible that new or
infrequent users are less likely to take the time to fill in the survey, which
may skew the results upward.

Usability strengths of the current products

Concerning the usability strengths of the current products, three partici-
pants mentioned the graphical floor plan viewer. Two participants men-
tioned that the products are relatively usable and efficient for advanced
users. And while not directly related to usability, two participants men-
tioned that the products are important and useful for their customers. Other
stated strengths were the search functionality in Moment, speed, and a
stability that users grow accustomed to. Concerning Fore, participants

CHAPTER 4. RESULTS 48

stated that it works better for infrastructure calculations than Microsoft
Excel, and that the visual design is quite pleasant.

Usability weaknesses of the current products

Almost all participants mentioned several usability problems with the cur-
rent products, with most answers focusing on Moment. Two participants
mentioned that it is important to differentiate between external customers,
who are often novice or intermediate users, and internal users, i.e. com-
pany employees mostly in the services unit, who tend to be expert users.
From the point of view of external users, the most commonly mentioned
issue was that the product is illogically structured, with some basic tasks
requiring the user to move between several views while keeping important
information in memory. Six participants mentioned problems related to the
structure. A related concern was learnability. Three participants mentioned
that Moment is difficult to learn for new users, and commented that it does
not guide users and that it requires extensive training.

Two participants stressed the point of view of the internal users. One
approximated that as much as “half” of the work of the internal users and
consultants is spent on work that may be considered “unnecessary” or
“routine”. The participant stated that much of the internal work was due
to misunderstandings by external users, but was unsure how much of this
can be solved by improving usability. However, the unnecessary work
was expanded by inefficient tools and low usability for internal users. The
two participants were both concerned that usability improvements that
would greatly enhance the internal efficiency constantly get sidelined by
requests from customers. Two other participants mentioned that much
of the internal work is due to customers not being able to manage some
aspects of the software by themselves, e.g. usage roles or permissions.

Some other usability weaknesses were less commonly mentioned. One
was that Optimaze.net is a monolithic product. While Channel has a
separate web interface, PM shares the user interface with Moment. As
there are many user roles with different goals and needs, this means that no
single user role is served perfectly by the user interface. Other mentioned
problems included that the information provided by the products is not
very refined, well summarized or visualized, that the user is given little
indication of what is important at the moment, and that the visual design
makes the product appear complex.

CHAPTER 4. RESULTS 49

Knowledge about the usability of the current products

The participants differed somewhat in their view on how good knowl-
edge the company has about the usability of the current products. Three
participants mentioned that the internal users and those interacting with
customers provide much feedback and improvement suggestions. Two
other participants mentioned that many employees have a hunch of the
problems. However, six participants were of the opinion that data gather-
ing needs to be improved, and four of these specifically mentioned that the
methods should be made more systematic, concrete or research-based. Two
participants mentioned the yearly customer satisfaction survey, and both
were of the opinion that it is insufficient and does not accurately reflect the
average user.

4.2.3 Usability in the development process

Overview of the development process

The development process at Rapal Oy consists of two tracks. The funda-
mental track includes development and maintenance of products currently
in use by customers, including Optimaze.net Moment, Optimaze.net Chan-
nel, Optimaze.net PM and Fore, as well as admin tools for internal users.
In addition to following a roadmap, a significant part of fundamental de-
velopment is made up of feature requests by individual large customers.
The future track includes development of new products. In it, the focus is
more on the long term, and there is more collaboration with outsiders such
as research departments.

The development methodology in use at Rapal Oy is Scrum, although
it is adhered to closely only in the future development track. Each of the
two main products, Optimaze.net and Fore, has a product owner that is
responsible for prioritizing requirements. The overall vision is provided by
the management team, which consists of the CEO as well as the heads of
the three business units.

Most participants described the future development track as following
Scrum quite closely. At the time of the research, development was done
in four week sprints by a team of two developers, one part-time designer
(the author), a scrum master and a product owner. Each sprint produces a
fully working and tested product increment, and after a sufficient amount
of sprints, the product is released to customers.

The fundamental track was described by four participants as more
chaotic, even “ad-hoc”, and only nominally Scrum. One participant de-

CHAPTER 4. RESULTS 50

scribed how the Scrum methodology is still relatively new in the company,
as there has been a gradual change from traditional development to agile
development, and that much has been achieved in a short time. Two par-
ticipants mentioned that the issues with following Scrum may be due to
the constant pressure caused by customer projects, i.e. requests for new
functionality that are considered so important that they may bypass the
process. Another participant mentioned that the fundamental track team,
which is larger than the future track team, is less coherent.

Strengths in the development process concerning usability

The following sections concern the fundamental track and future track
projects prior to Optimaze.net Scenario. It excludes the Scenario case
project, which is analyzed as part of the action intervention in Section 4.3.

While interaction design practices such as user research, iterative proto-
typing and usability evaluations were not used in the development process,
Scrum and agile practices were generally seen as beneficial to usability.
Three participants described the agile focus on working in teams and
communicating frequently as aiding usability, because it creates a shared
understanding of the product and the problems it attempts to solve. Writ-
ing requirements as user stories and testing them with acceptance tests was
also mentioned as a strength by four participants, because user stories put
focus on the needs of users rather than on the technology. A developer also
mentioned that development is easier if the goals of the user are commu-
nicated clearly. Two participants also mentioned having a single product
owner overseeing and prioritizing requirements as beneficial to usability.

Another strength, mentioned by three participants, was the fact that
the company employs experts that work as internal customers, and that
are able to provide feedback, including feedback on usability, as well as
to aid in development. One participant described the in-house interaction
of developers and domain experts as one of the underlying ideas of the
company. In addition, one participant suggested that it may be useful that
the company has many young employees with knowledge about usability.

Weaknesses in the development process concerning usability

Reported weaknesses in the process concerning usability were much more
numerous than strengths. The most widely reported problem was too
much focus on quickly satisfying customer requests and on short-term
gains. Other problems included difficulties creating a unified product
vision, lack of sufficient design before development, lack of skill, problems

CHAPTER 4. RESULTS 51

working in teams, and no user testing.
Five participants stated that the focus in the company on quickly sat-

isfying customer requests by adding functionality to the products made
the usability of the products suffer. Even though one of the strengths of
the company was the possibility to gain rapid feedback from internal users,
two participants stated that in practice this feedback is seldom taken into ac-
count, as new functionality requested by customers push it to the bottom of
the product backlog. One participant especially viewed the Scrum practice
of always developing what is on the top of the product backlog as causing
minor but important improvements, especially qualitative improvements,
to fall between the cracks, while highly visible new functionality is pro-
moted. Another participant mentioned that this focus may be the result
of a period of rapid growth, but that it is not sustainable in the long run.
Three participants mentioned that not being able to focus on a certain set of
functionality for a full sprint, due to customer interruptions, makes putting
effort into usability more difficult. Also, two participants stated that many
projects were only one or two sprints in length, which is too short to give
time to any kind of usability work, and that many products have been left
in an uncompleted state as a result.

A second problem, mentioned by three participants, was a difficulty in
creating a unified vision for the products and communicating it effectively
to the developers. Two of the participants stated that this is a common
problem in agile development, where the focus on doing one user story at a
time detracts from pausing and thinking about the big picture. While there
are epics, i.e. high-level user stories, their sufficiency to communicate the
vision was questioned by one of the participants.

Three participants mentioned as a problem a lack of investment in
usability when developing the main products. When adding functionality
to existing products, usability is given little, if any, consideration. Two
participants also mentioned that there is too little usability knowhow in
the company. A lack of teamwork and communication between developers
was also seen by two participants as sometimes decreasing the consistency
of the products. When developers focus too much on their individual parts
of the product, they may create solutions that are individually usable but
difficult to use when put together.

Two participants mentioned a problem with finding time for design
before development. This was seen as a weakness in moving directly from
user stories to coding, as what is coded might not be the best or even a
good solution to the user need. One participant mentioned that, when
user stories are clarified as late as the sprint planning or during the sprint,
there is not sufficient time for design. When there is no specific design

CHAPTER 4. RESULTS 52

phase before development, as in traditional development, it is too easy to
leave out necessary design work when time runs short. A final problem,
mentioned by one participant, was a lack of user testing, including not
only usability testing but also alpha- and beta-testing before products are
released.

4.2.4 Usability in the future

All nine participants were of the opinion that more should be invested in
improving usability in the future. The most commonly mentioned reason
for investing in usability was that it will increase the amount of customers
in the long term, both because selling usable products is easier, and because
current customers that are satisfied with the usability of the products will
tend to recommend them to their colleagues. Six participants mentioned
this as an argument. Another benefit, mentioned by three participants,
was that increased usability will make the internal users more efficient in
providing services. One participant also mentioned that if internal usability
is improved, it is easier to collaborate with other companies, allowing them
to provide services while Rapal Oy provides the products. Finally, one
participant mentioned that improved usability will decrease the load on
customer support.

Concerning drawbacks with investing in usability, five participants
stated that it requires greater resources and thereby increases the cost of
development. Also, there is often a trade-off between usability and new
functionality. However, two of the participants that mentioned increased
costs stated that these costs are only short-term, and that in the long term,
investment in usability will pay itself back with increased sales and de-
crease need for support. Other possible problems mentioned were that the
company has to learn to work with longer projects and release cycles, and
that there is a risk that investment in usability will not be targeted at the
products or product areas where it would be most beneficial.

Four of the participants stated that they were optimistic about the
company’s investment in usability in the future, as user experience is
now part of the strategy. However, five participants stated that, even
though there is now a clear message from management that usability is
important, it is still uncertain how much resources management is willing
to invest in usability in practice. There is the risk that, if resources are
insufficient, it may be too difficult to decline requests for new functionality,
and usability may draw the short straw in the trade-off between quick
gains and long-term investment in quality.

CHAPTER 4. RESULTS 53

4.2.5 Summary

Nine company employees were interviewed on the state of usability in
the company. The results are summarized in Figure 4.1. All participants
considered usability to be an important or very important concern. There
was some disagreement on how usable the current products are, but overall
more weaknesses were mentioned than strengths. The most commonly
mentioned strengths were the graphical floor plan viewer and efficiency
for advanced users, while the most commonly mentioned weaknesses
were illogically structured products from the point of view of the user, low
learnability, and inefficient user interfaces for internal users.

Both strengths and weaknesses concerning usability were identified
in the current software development process. The most commonly men-
tioned strengths were teamwork and communication, requirements that are
written from the point of view of the user, internal users that can provide
feedback and product owners that oversee and prioritizes requirements.
The most commonly mentioned weaknesses were too much focus on quick
fixes and short-term gains, a difficulty to create and communicate a unified
product vision, a lack of effort in improving usability, too little usability
knowhow, and insufficient design before development.

4.3 Action intervention

4.3.1 Usability activities in general

Interviews

All case project team members as well as the head of development were
interviewed after the action intervention. All interview participants agreed
that there had been significantly more effort put into usability activities
than had been in previous projects. Paper prototyping and usability testing
where mentioned in particular. The product owner mentioned that this
was her first project where there was feedback from end users before the
release. Both the product owner and scrum master were very satisfied with
investing more in usability. The head of development mentioned that the
project had worked as a model project for testing new usability practices.

Some general problems with usability resourcing were mentioned. The
product owner was of the opinion that more could have been done in
interviewing users during the early stages of the project. She also thought
it difficult to communicate to management that fixing usability problems
requires development resources, and thought there was too much pressure

CHAPTER 4. RESULTS 54

Usability strengths

1. The graphical floor plan
viewer is usable (3)

2. The products are quite efficient
for advanced users (2)

Usability weaknesses

1. The products are illogically
structured for users (6)

2. The products are difficult
to learn for new users (3)

3. The products cause unnecessary
work for internal users (2)

1. Developers work in teams and
communicate frequently (3)

2. Requirements are written from
the point of view of the user (3)

3. The company employs internal
users that can provide feedback (3)

4. A product owner oversees and
prioritizes requirements (2)

1. There is too much focus on quick
fixes and short-term gains (5)

2. It is difficulty to create and
communicate a unified
product vision (3)

3. There is a lack of effort in
improving usability (3)

4. The company has too little
usability knowhow (2)

5. Insufficient design is done
before development (2)

C
ur

re
nt

 d
ev

el
op

m
en

t
pr

oc
es

s
C

ur
re

nt
 p

ro
du

ct
s

Figure 4.1: The most commonly mentioned usability strengths and weak-
nesses in the current products and development process. The numbers in
parentheses are the amount of participants that mentioned the item.

CHAPTER 4. RESULTS 55

on adding new functionality. The scrum master thought that spending
more time on educating the rest of the team about usability would have
been important. He also thought that it would be better to have a full-time
interaction designer on the team.

Observation

In general, the interaction designer was given almost free hands in intro-
ducing and testing new usability practices. The designer also got support
with implementing the practices, including recruiting test participants,
arranging and piloting usability tests, rewarding test participants, and
acquiring the necessary materials for prototyping. While the rest of the
team members did not have that much time for usability practices, the
scrum master was able to help significantly with prototyping. The product
owner also supported the usability activities to the extent that her schedule
allowed.

4.3.2 The interaction designer role

Interviews

All participants where positive about having a person with the designated
role of interaction designer on the team, although there were some concerns.
Among the most important responsibilities of the designer, the participants
mentioned design and prototyping, arranging usability tests, determining
user needs, making sure the user interface is consistent, and aiding the
product owner in understanding the product. All participants thought
the end product would have been of lower quality and less consistent had
there been no interaction designer.

There was disagreement among the respondents about whether the re-
sponsibility for usability and the user interface was too concentrated in the
interaction designer. The developers were neutral or thought that this spe-
cialization was useful, and the product owner also thought specialization
produced better results. However, the scrum master was concerned that
this arrangement made the designer somewhat separated from the team,
and made the developers take less responsibility for the user interface,
passing on even minor decisions to the designer. The scrum master was
also concerned that, though he and the product owner had participated in
prototyping, the developers had not participated at all.

The head of development, product owner and scrum master all men-
tioned that there would have been a need for more usability knowledge

CHAPTER 4. RESULTS 56

on the team. They mentioned that there were some slowdowns in the
development when the designer was not present, and that either a full-time
designer or more usability knowledge on the team may have solved this.
Also, the head of development mentioned that in the future, there would
be a need for more interaction design coordination between individual
projects and the entire product portfolio.

Observation

Having a dedicated person on the team with the responsibility for the
usability of the product was important, as it guaranteed that sufficient
time and effort was put into the necessary usability activities. While ac-
tivities such as paper prototyping have quite a low threshold and could
conceivably have been done well by developers alongside development,
any activity that involved interaction with external users required dedi-
cated time for planning and execution. More immediate concerns often
trump this longer-term thinking. This was noticed several times during
the project when the designer was asked to aid in tasks such as front-end
development, bug fixing and technical testing. The product owner also
would not have had time to plan or arrange these activities.

4.3.3 The product vision and user research

Interviews

Most interview participants stated they had a good understanding of the
product vision throughout the project, although one developer mentioned
that this was not the case, especially in the beginning of the product. The
same developer also mentioned that the team’s understanding of the target
users’ needs was lacking, and that this caused unnecessary changes during
the project. Likewise, the head of development also stated that it was
unclear who the product users really are. He also stated that some of
the big questions concerning user needs had not been resolved during
the project. Concerning the usability goals of the project, all participants
had a moderate understanding of usability goals. However, the head of
development mentioned that the goals were not concrete, and both he and
the scrum master mentioned the difficulty of creating concrete usability
metrics.

When asked about initial planning, the head of development stated
that a clear vision and understanding of users is very useful when making
business decisions about whether to invest in projects, and that it is easier to

CHAPTER 4. RESULTS 57

make good decisions if prototypes are created before development begins.
All participants thought a better understanding of the target users would
have been useful before development began, but both the product owner
and scrum master were skeptical about how much can be learned before
development has started and there is something concrete to test or discuss.

Observation

Some effort was put into understanding the users before development
began. The different user roles of the product were clarified in the beginning
and two rounds of paper prototyping was done during the initial planning
stage. The prototype tests included some discussions with the users about
their needs. The product vision was also quite clearly defined, and high
usability was stated as one of the most important goals in the vision.

There were also several problems concerning user research. Early con-
tact with users was achieved only through prototype testing, and not
through interviews or observation of how the users currently solve the
problems the product focused on. From this followed that the focus was
more on validating initial design ideas than on understanding the users
and their needs. Also, some of the users participating in the tests were
probably not that representative of the target users of the product. Late
in the project, an interview was conducted with a user that was able to
explain his needs much better than any of the users during the beginning of
the project. Gaining this understanding earlier would likely have reduced
the amount of change and improved the product.

In addition, during the beginning of the project, the understanding of
the users was mostly limited to the product owner, interaction designer and
scrum master. The developers did not participate in the initial planning or
prototype testing, and user modeling methods such as personas were not
used. The usability testing in sprint 3 was the first time the entire team saw
a representative user interact with the product or a prototype thereof.

4.3.4 The use of paper prototypes

Interviews

All participants agreed that paper prototyping was a good way of designing
the product. The head of development and product owner mentioned that
paper prototypes are very useful because they visualize the direction of
development better than user stories, and make it easier to improve the
design before code is written. Both the head of development and the scrum

CHAPTER 4. RESULTS 58

master were of the opinion that paper prototyping is a very cost-efficient
way of designing. Both developers and the scrum master mentioned that
paper prototypes provide sufficient information for development, and
make it easier to estimate user stories.

Some problems with paper prototyping were also mentioned. The most
commonly mentioned issue was that paper prototypes could not depict
interactivity (such as drag-and-drop) well. One of the developers men-
tioned that the relationship between user stories and prototypes sometimes
was difficult to understand, as one prototype included multiple stories.
Annotating each part of the prototype with the user story it belonged to
helped with this problem. Paper prototypes were also difficult when doing
remote work, as they had to be digitized to be accessible remotely. Finally,
the scrum master was concerned that the developers sometimes perceived
the prototypes too strictly as a specification, and therefore thought less
themselves about the usability of the product.

Observation

Paper prototyping was a very useful method for designing the product.
Creating paper prototypes was quick, efficient and fun. Compared to
higher-fidelity prototypes, drawing on paper was so flexible that it did
not unnecessarily restrict the possible solutions to those that are easily
implemented. Working on the prototype together with the product owner
and scrum master also made it possible to quickly comment on and improve
each other’s ideas. Many of the best solutions were achieved this way. It
was also easier to resolve disputes about the design, because when ideas
were made concrete in the prototype, it was often easier to see which idea
would likely work best.

Testing the prototype with end users was also useful. Preparing the
prototype for the tests was time-consuming, but forced the designer to
think through how the prototype would actually be used, which already
found some problems. Testing the prototypes also found multiple problems.
Some users, however, did not completely understand the idea of using the
prototype, and preferred discussing it in general terms, which was less
useful. While the tests produced much data, it was difficult to communicate
some of the findings to the team. Testing would likely have been more
useful if at least the product owner had been able to participate in the test
sessions.

A paper prototype also worked well as a way of communicating the
design to developers. There were some misunderstandings about the
prototype, but these were generally resolved by communication during the

CHAPTER 4. RESULTS 59

sprint. Some important misunderstandings concerned more complicated
workflows in the product, as these could not be easily captured in the
prototype. Paper prototypes also worked reasonably well as a way of
communicating to stakeholders outside the team, although this depended
a lot on the person. While some stakeholders understood the idea of paper
prototypes well, others were not that interested, and paid much greater
attention when they saw a working product.

The benefits of paper prototyping were seen most clearly in sprint 3,
whose user stories had not been prototyped before the sprint began. This
caused several misunderstandings, and even when the user stories were
correctly understood, some of the solutions were not ideal from the user’s
point of view. Some of the stories therefore had to be redone in sprint 4,
this time with paper prototyping done first.

4.3.5 Designing one sprint ahead

Interviews

All participants agreed that it was best to design one sprint ahead of devel-
opment. The head of development and the product owner both mentioned
that in previous projects the sprint demo often was the first time they saw
some of the functionality, and at that point changes could be too time-
consuming to implement. Designing one sprint ahead made it possible
to improve the design when it was still quick and inexpensive. Also, the
product owner mentioned that although in theory she could guide the
development through the entire sprint, in practice because of her schedule
this was seldom possible. Designing one sprint ahead gave her time to
validate the design before it was implemented.

According to all participants, a paper prototype was an appropriate
level of design before the development sprint begins. One of the developers
and the scrum master mentioned that the simplest stories may not require a
prototype at all. The product owner stated that a higher-fidelity prototype
seldom is required before the sprint begins, as the design can be refined
during the sprint. The product owner and scrum master both mentioned
that it was easier to refine the user stories, update acceptance tests and
notice missing stories based on a prototype than without one. The scrum
master also noted that well written user stories, i.e. user stories stating the
need of the user without specifying anything about the implementation,
seldom needed to be updated as the prototype progressed.

CHAPTER 4. RESULTS 60

Observation

Designing one sprint ahead worked much better than designing in the
same sprint. Most importantly, it provided sufficient time to refine and test
the prototype. This would not have been possible during the same sprint,
as it would have created a bottleneck with the developers waiting for the
first stories to be designed and tested. Also, it was often useful to design
on the sprint level rather than the story level. Even if the user stories were
independent, their designs often affected each other. If the design would
have been done one story at a time during the sprint, it would have been
more difficult to keep the user interface consistent. Finally, approximately
one sprint of functionality was the smallest increment that was reasonable
to test in one round of prototype testing. Testing the designs for individual
stories during the development sprint would not have been practical.

4.3.6 Usability testing of sprint results

Interviews

The product owner, scrum master and both developers thought that view-
ing the recording of a usability test and analyzing it together with the
team was very useful, and that viewing a recording instead of the live
test provided a sufficiently good understanding of the test results. The
product owner thought it was enlightening for the entire team, especially
the developers. One of the developers stated that viewing the test provided
a good understanding of the usability problems in the product. The scrum
master mentioned that it was possibly the single most important usability
activity because it helped the entire team understand user behavior.

As a problem with usability testing, the product owner mentioned
the difficulty of finding good participants, and the head of development
also expressed a concern that not having actually representative users as
participants would provide misleading results. The product owner also
thought that too few of the usability test findings could actually be fixed in
the product, due to a lack of time. Finally, one of the developers mentioned
that viewing only one test was not enough to give a good view of the range
of users using the product.

Observation

Testing the working product in addition to testing the prototype was useful,
because it found problems that could not have been found using a paper
prototype. Some of these problems were related to user input or visual

CHAPTER 4. RESULTS 61

design; others were due to unexpected user behavior that would not have
been possible in the paper prototype. One of the users that participated in
the working product tests also later participated in a prototype test. The
former was more useful, because in the latter the user did not interact as
much with product.

Watching and analyzing one of the tests with the team was also very
useful. The developers were interested in the results, because they knew
the product well. The list of prioritized usability problems that the analysis
produced was also more useful than the list the designer produced indepen-
dently before that, both because it included new important problems, and
because it was based on the shared understanding of the team. Many of
these problems were solved in later sprints, but some important problems
were never fixed due to lack of time.

4.3.7 Communication within the team

Interviews

The participants mentioned several problems with usability communica-
tions within the team. The developers mentioned that there were sometimes
significant delays when they needed information from the designer, espe-
cially during the beginning of the project. The scrum master emphasized
the importance of participating in daily scrum meetings, stating that at
times when the designer did not participate the usability activities became
somewhat invisible to the team, and this lessened team cohesion. This also
led to problems developing a shared understanding of the expected level of
usability, and there were misunderstandings when something was implied
by the designer but not clearly included in the prototype.

Also, the project wiki did not work that well as a way of communicating
usability test findings to the team. The scrum master mentioned that it in
some cases became a place to put information without anyone ever looking
it up. The paper prototype wall was much better received. One of the
developers mentioned using it continuously, and the product owner and
scrum master both thought it useful that it increased the visibility of what
is being developed, both within and outside the team.

Observation

The most significant communication problems related to usability occurred
when the designer was not available to answer the developers’ questions
for longer periods of time. Suggesting changes to the implementation only

CHAPTER 4. RESULTS 62

after it was done sometimes caused disagreements, as the developers ex-
perienced that they had done the implementation according to their best
knowledge, and had already moved on to new tasks. A better understand-
ing of the users and of usability in general throughout the team would
likely have resolved some of these communication problems.

4.3.8 Summary

Several new usability practices were tested in the case project. These in-
cluded a dedicated interaction designer on the team, paper prototyping
one sprint ahead of development, and usability testing sprint results. In
general, these practices were very successful, although there were some
issues. Paper prototyping one sprint ahead of development was well re-
ceived, because it was cost-efficient, encouraged better design, and allowed
ideas to be validated before implementation. It also gave the team and
stakeholders better visibility of the direction of development. Usability test-
ing sprint results produced many useful findings, and analyzing the tests
together gave the whole team better insight into user behavior and usability
problems in the product. Problems in the case project concerning usability
included insufficient user research in the beginning and communication
issues.

Chapter 5

Recommendations and conclusions

5.1 Introduction

This chapter answers the research question by presenting a set of recom-
mended practices for improving the usability of products created by the
company. The recommended practices, which are listed in Section 5.2, are
based on the findings of the literature review, the current state analysis and
the action intervention. Each practice is further divided into sub-practices
that clarify how it should be implemented. In addition, each practice has a
section describing the justification of the practice in the research. Section 5.3
discusses how the practices should be combined, and Section 5.4 concludes
the research.

5.2 Recommended practices

5.2.1 Include an interaction designer on the team

Assign the role of interaction designer to one member of the team

This person should have the necessary skills for the job, and should work
at least half-time, but ideally full-time, with usability activities on the team.
The interaction designer role is an addition to the standard Scrum roles of
product owner, scrum master and developer. The skills and focus required
are sufficiently distinct to warrant making it a separate role, rather than
a specialization of the developer role. However, the interaction designer
should still be considered equal as a team member, neither superior nor
inferior to the developers.

63

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 64

Make the designer responsible for the usability of the product

The interaction designer should be the primary person responsible for the
usability of the product, in the same way the product owner is responsible
for the business value and the developers for the technical implementation.
However, in cases where there are significant trade-offs between usability
and functionality or other quality attributes, such as security, it is still the
responsibility of the product owner to decide what is most important for
the product as a whole. Also, even if the interaction designer has primary
responsibility, the entire team should understand that the work of every
team members ultimately affects the usability of the product.

Make a developer designer if no specialized designer is available

The developer should work at least half-time on usability activities instead
of development. While it is not ideal to have an interaction designer with-
out the specialized skills, it is better than having none at all. Some usability
benefits can already be gained just by performing usability activities at all,
and the basics do not take that long to learn. However, this requires that
time is reserved for the activities, as they cannot be done as an afterthought.

Justification

Having a dedicated interaction designer role on the team is widely sup-
ported in the literature. Beyer, Holtzblatt, and Baker (2004) state that agile
teams require that design skill is available. Nielsen (2009a) states that us-
ability should be part of the agile team, and Gulliksen et al. (2003) and
Kreitzberg and Little (2009) recommend that teams include a usability
champion. Nielsen (2007) states that, while a dedicated usability specialist
is to be preferred, having developers take on usability work is much better
than having no one responsible for usability. Finally, Federoff and Courage
(2009) found that designers should work on at most two agile teams at a
time.

The current state analysis supported the idea of an interaction designer
role. Reported problems included too little usability knowhow and a lack
of investment in usability. These problems are at least partially caused by
no one being responsible for the usability of the product. The designer role
was also positively received in the action intervention. It was found that
the role made it possible to focus on usability and to dedicate sufficient
time and effort to usability activities.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 65

5.2.2 Understand the users before development begins

Create and communicate a clear product vision

A precondition to understanding the users of a product is to have a clear
vision of what the project should be. This includes understanding who the
target user are, what user needs the product attempts to fulfill, and in what
general way the product attempts to do so. Creating the product vision
is primarily the responsibility of the product owner, but the interaction
designer should help the product owner create and clarify the vision, and
especially help keep the vision focused on actual users and their needs.
The product vision should also state the usability goals of the product, i.e.
the necessary level of usability to fulfill the product vision. Work on the
product vision should be started before the project begins, and the vision
should be clearly understood by all team members at the end of the first
sprint.

Understand the target users before development begins

In the first sprint, before development begins, the focus of the interaction
designer should be on understanding the target users of the product, in-
cluding their goals, needs and behavior. Together with at least the product
owner, the designer should start by identifying and prioritizing the differ-
ent user roles of the product. The focus should then be on understanding
the one or two most important roles. For new products, users that are
representative of the roles should be interviewed, or the designer should
observe how they currently solve the problem. For improvements to cur-
rent products, the designer can instead observe how the users use the
current product. Preferably, all observation should be done in the user’s
natural work environment, using contextual inquiry. The product owner
should participate in most of the user research, and other team members
may also participate to some extent.

Communicate the product vision and user research clearly to the team

The product vision and user research should be communicated clearly
to the entire team. To communicate user research, techniques such as
personas can be used. The most important parts of the vision and user
research findings should be kept in a visible location, e.g. on a wall in
the working area. The vision and user research findings should also be
regularly updated whenever new important information about the target
users is learned during the project.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 66

Justification

Pichler (2010) emphasizes the importance of creating a clear product vision
in agile projects. Budwig, Jeong, and Kelkar (2009) and Nielsen (2009a)
recommend quarterly to annual design vision sprints to update the vision.
Including end users early is among the most fundamental usability prin-
ciples (e.g. Gould and Lewis, 1985). Beyer, Holtzblatt, and Baker (2004),
Sy (2007) and Nielsen (2009a) all recommend some initial user research in
agile projects before development begins, and point out that users should
be observed in addition to listened to.

The current state analysis found that too much focus on quick fixes and
short-term gains as well as a difficulty to create and communicate a unified
product vision were problems in the company. Regular vision and user
research sprints are a possible solution to this, as they temporarily change
the focus from short term to long term. The action intervention also found
that a clear product vision was beneficial, but that the usability goals were
somewhat lacking. There was also insufficient user research early in the
project, and information about the users was not communicated clearly
enough to the developers.

5.2.3 Design primarily using iterative paper prototyping

Design every user story as a paper prototype

Before development on a user story begins, it should be designed as a paper
prototype. The paper prototype should be hand-drawn, and it should
include the level of detail necessary to communicate all significant aspects
of the design. The prototype should be based on realistic data, and it should
cover all steps necessary to complete the user story. Multiple user stories
may be designed using the same prototype. The paper prototype should
primarily be created by the interaction designer, but the product owner
should regularly participate to ensure that the prototype actually satisfies
the user stories. The scrum master and developers may also participate in
the paper prototyping.

Discuss the prototype with the team and other stakeholders

When a paper prototype has been created, it should be discussed at least
with the product owner, and preferably also with other team members as
well as any relevant domain experts or other stakeholders outside the team.
Discussions with the product owner and domain experts should focus on
whether the prototype satisfies user needs, uses the correct terminology, and

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 67

implements the domain logic correctly. Discussions with the developers
should focus on whether the prototype is feasible, how much development
effort it requires, and whether there are better technical solutions to any
part of it. Based on the discussions the prototype should be improved and,
if necessary, discussed again.

Test the prototype with two or three representative users

It is not enough to discuss the paper prototype; it should also be tested with
representative end users. Once a sprint, the prototype should be tested with
two or three end users that are representative of the user role or persona the
prototype is designed for, and improved based on the findings. The tests
should be simple exploratory tests, about one hour in length, where the
user first performs realistic tasks based on the user stories covered in the
prototype while thinking aloud, and after that is asked to comment on the
prototype in general. The designer and product owner should participate
in the tests, and the tests may be recorded so that they can be viewed by
other team members and stakeholders afterwards. If it is not possible to
recruit representative users, it is better to test the prototype with company
employees than not at all. In that case, the participants should neither be
developers nor directly involved in the project.

Communicate the prototype clearly to the developers

When the prototype is done, it should be communicated clearly to the
developers. The designer should walk through the prototype with the
developers, and answer any questions they have. After that, the prototype
should be put in a visible location, for example on a wall in the working area.
The prototype should be annotated with notes explaining interaction that
is not obvious. The different parts of the prototype should also be marked
with the user stories they cover, so that the connections between stories and
prototype are clear. Also, in cases where the navigation or workflows in the
prototype are complicated, these should be communicated with additional
artifacts, such as navigation maps and workflow diagrams.

Justification

Gulliksen et al. (2003) state the importance of simple design representations.
Rubin and Chisnell (2008) explain how exploratory usability tests can be
performed early to test high-level aspect of the design. Beyer, Holtzblatt,
and Baker (2004) and Nielsen (2008a) emphasize the importance in agile
projects of testing the design before it is coded. Federoff and Courage (2009)

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 68

explain how a prototype can work as the specification for developers, and
Meszaros and Aston (2006) praise paper prototypes for making the product
vision tangible.

The current state analysis found that one of the strengths of the com-
pany was that it employs internal experts that can provide useful feedback
on the product. This feedback can be immediately utilized if it given based
on a prototype, before development. In the action intervention, paper pro-
totyping was a useful and cost-effective method for designing the product
and evaluating the design. Paper prototypes were useful for visualizing
the direction of development, and aided in estimation and development.
The prototype wall also worked well.

5.2.4 Design one sprint ahead of development

Design a paper prototype of every user story before a sprint begins

Paper prototypes covering every user story that may be developed in a
sprint should be created, discussed and tested in the sprint prior to the de-
velopment. The prototype should be completed before sprint planning, so
that the sprint can be planned based on the prototype. As the final estimate
of how much can be included in a sprint is done during sprint planning,
there will need to be prototypes for a few extra stories that may not fit into
the sprint. After the sprint has begun, only minor changes may be made
to the prototype. Any changes that significantly affect development effort
should be included in the design for later sprints. However, the proto-
type may be elaborated on during the development sprint, for example by
creating a high-fidelity prototype to communicate visual design.

Do not develop any user stories in the first sprint

Because every user story should be designed before a sprint begins, no
user stories should be developed in the first sprint of a release. This is
necessary to allow sufficient time for design before development begins.
The developers should still be present during the sprint, so that they can
discuss the prototype and estimate effort. The developers may also perform
activities that do not produce user-visible functionality, such as preparing
the development environment, planning the architecture, refactoring the
current code and, if necessary, fixing bugs in the previous release.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 69

Update, estimate and re-estimate user stories as the design progresses

As the prototype progresses during the sprint prior to development, the
user stories and their acceptance tests should be updated by the product
owner to reflect the most recent understanding. When the sprint begins, the
user stories and prototype should be in agreement. Also, the user stories
should regularly be estimated and re-estimated by the developers as the
prototype progresses. A more accurate prototype allows developers to give
better estimates, and this in turn allows the product owner to better plan
the stories that will fit into the sprint, and the designer to know how many
stories need to be designed before the sprint begins.

Justification

The practice of designing one sprint ahead of development was first pro-
posed by Miller (2005) and Sy (2007), and has since become one of the
most widely recommended agile usability practices in the literature. It is
recommended e.g. by Budwig, Jeong, and Kelkar (2009), Kreitzberg and
Little (2009) and Nielsen (2009a), who includes it as one of the two most
important recommendations for ensuring good usability in agile projects.
It is also recommended by agile author Cohn (2010) as well as Federoff
and Courage (2009), who specifically state that it is beneficial for enterprise
software.

One of the problems found in the current state analysis was that too
little design was done before user stories were developed. The action
intervention found that designing one sprint ahead allowed for enough
time to prototype, discuss, test and iterate on designs. It made it easier for
the design work to take into account the sprint as a whole, rather than just
individual stories. And, critically, it allowed the product owner to update,
add, remove and reprioritize user stories based on the new information
gained through prototyping and prototype testing.

5.2.5 Usability test sprint results with representative users

Test the usability of sprint results with two or three representative users

In addition to testing the paper prototype, the usability of the working
product should also be tested. This makes it possible to find usability
problems that cannot be found in paper prototype testing, such as most
problems related to interaction, visual design and performance. Once a
sprint, the product increment developed in the previous sprint should be
tested with two or three end users that are representative of the appropriate

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 70

user role or persona. Simple assessment tests should be used, in which the
user is given realistic tasks based on the user stories developed in the sprint,
and asked to perform them while thinking aloud. Compared to prototype
testing, the focus should be mostly on observing the user’s behavior while
interacting with the product, and not on getting the user’s opinions. As
with prototype testing, if it is not possible to recruit representative users,
it is better to test the prototype with company employees than not at all,
as long as the employees are not developers or directly involved in the
project.

View and analyze the tests with the entire team

The entire team should view the usability tests of the working product,
either live (without disturbing the tests) or from recordings afterwards.
This gives the entire team, including the developers, the possibility to
better understand the behavior of the product’s users. It is also easier to
feel empathy for the user and to understand the importance of various
usability problems after viewing an actual user interacting with the product.
After viewing the tests, the entire team should together analyze them to
come up with a list of the most important usability problems. In this way,
each team member thinks through the usability of the product and the
problems they observed.

Take into account findings when designing for the next sprint

Any important usability problems found in the tests should be taken into
account when planning the following sprint. If the problems are so im-
portant that they endanger the usability goals of the product, they should
be written as new tasks and prioritized at the top of the product backlog.
These should then be included when designing the prototype for the next
sprint. If the usability problems are less important, they may be written
as new user stories or included into existing user stories, and prioritized
separately by the product owner.

Justification

A common recommendation in the literature is to test the usability at
different levels of development, both with low-fidelity prototypes and
working code. Rubin and Chisnell (2008) recommend assessment tests,
in addition to exploratory tests, to evaluate the usability of lower-level
operations and aspects of the product. Krug (2006) recommends three users
per test, but states that even testing with one user is much better than not

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 71

testing at all. Beyer, Holtzblatt, and Baker (2004) also state that, in addition
to testing before coding, the code should also be usability tested when
needed. Finally, Ferreira, Noble, and Biddle (2007a) found the completion
of sprints a valuable opportunity to test the usability of working software
early in the project.

The current state analysis did not find anything to directly support
usability testing of sprint results, other than the perceived low usability
of current products. The action intervention, however, found the practice
useful. Testing the working product found several important usability
problems, and it allowed the team to view users struggling with the product
they had created. However, it was also found that important usability
problems need to be put on top of the product backlog, to ensure that the
test results are taken into account.

5.2.6 Support development through regular communication

Have the designer regularly available for feedback

Because a paper prototype is a low-fidelity design that leaves open some
assumptions and cannot communicate certain aspects of the design at all, it
is important that the designer does not simply hand off the prototype to
the developers. Rather, the designer should be regularly available through-
out the development sprint to support the developers, by explaining and
elaborating on the design and by answering questions about the design
and the best way to implement it. The designer should participate in the
daily scrum meetings, so that there is at least one moment reserved for
team communications each day. Participating in the same meeting every
day also improves team cohesion. The designer should sit with the team
or close to it, to lower the communication threshold. Finally, the designer
should follow up how story development progresses, and comment on and
suggest improvements to stories while they are still in development, rather
than criticize them after they are done.

Spread usability knowledge to the entire team

The designer cannot be constantly available to help development, so it
is important that the entire team learns the basics of developing usable
products. The designer should be responsible for spreading knowledge
about usability to all members of the team, either through education or
through involving team members in usability activities, such as user re-
search, usability tests, prototyping sessions or design studios. In turn, the

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 72

designer should also strive to learn about the development of the product
and how development considerations affect the design.

Justification

The importance of designers and developers working as a team and com-
municating frequently is stressed by multiple authors. Miller (2005) state
that daily interaction was critical to success and Nielsen (2009a) state that
designers should be co-located with other team members. Cohn (2010)
considers it essential that designers are part of the team and also focus on
the current sprint, in addition to designing ahead. Finally, Ungar and White
(2008) and Federoff and Courage (2009) emphasize the benefits of including
the entire team in the design, thereby spreading usability knowledge to all
team members.

The current state analysis found that one of the strengths of the devel-
opment process concerning usability was teamwork and frequent commu-
nication. The action intervention also found communication critical, with
problematic outcomes when the designer was not sufficiently available. In-
sufficient developer education in usability and involvement in the usability
activities also caused some problems in the project.

5.3 Combining the practices

To implement all the recommended practices successfully, it is necessary
to combine them into a consistent whole. This can be visualized in several
ways. Figure 5.1 shows how the practices are combined from the point of
view of the project schedule. In it, the responsibilities of the interaction
designer are show in a separate track, next to the product owner and the
developers. The activities performed by the designer vary depending on
the sprint, with the first, second and last sprint of a release containing
different usability activities than the middle sprint.

The schedule shows that implementing all the usability practices in a
release requires that the release is at least four sprints long. With a four
sprint release, the highest priority user stories are designed in the first
sprint, developed in the second sprint, usability tested in the third sprint
and improved in the fourth sprint. Although the recommended practices
ensure that every user story is prototyped and the prototype is tested, only
the stories from the first sprints will be usability tested in code. Including
more sprints in a release will allow the team to test the usability of a larger
part of the working product.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 73

… Develop Develop Prepare development Develop Develop Prepare development

… Create vision
Manage backlog Manage backlog Manage backlog Manage backlog

Pr
od

uc
t o

w
ne

r

Manage backlog Refine vision
Manage backlog

…
Conduct

user
research

Design next sprint

Support current sprint

Sprint 1 Sprint 2 Sprint 3 Sprint n-1

In
te

ra
ct

io
n

de
si

gn
er

Support current sprint

Sprint n

New project begins Release

Sprint 1

Design
next sprint

Support current sprint

Test
previous

sprint

Design
next sprint

Support current sprint

Test
previous

sprint

Design
next sprint Conduct

user
research

Design
next sprint

D
ev

el
op

er
s

Figure 5.1: Combining the recommended practices in the project schedule.
In a release with n sprints, the interaction designer conducts user research
in sprint 1, designs using iterative paper prototyping in sprints 1 to n-1,
and tests the usability of sprint results in sprints 3 to n-1. Sprint n does not
include usability testing, as there is no more time in the release to take into
account the findings.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 74
D

es
ig

n
ne

xt
 s

pr
in

t

Sprint 1 Sprint 2

D
ev

el
op

D

es
ig

n
ne

xt
 s

pr
in

t

Usability problem

Usability problem

Sprint 3

D
ev

el
op

D

es
ig

n
ne

xt
 s

pr
in

t

Sprint 4

Te
st

 p
re

vi
ou

s
sp

ri
nt

Usability problem

Usability problem

D
ev

el
op

Te

st
 p

re
vi

ou
s

sp
ri

nt

Sprint 5 (last)

D
ev

el
op

D
es

ig
n

ne
xt

 s
pr

in
t

Usability problem

Usability problem
Usability problem

Usability problem

Figure 5.2: The recommended practices from the point of view of the prod-
uct backlog, in a five sprint release. User stories are designed in the sprint
before development and usability tested in the sprint after development.
Important usability problems found in testing are included in the design for
the next sprint. Stories developed in the last two sprints are not usability
tested in the release.

Another way to visualize the practices is shown in Figure 5.2. This figure
shows how user stories in the product backlog are designed, developed
and usability tested as the release progresses. In the case of a five sprint
project, stories developed in the second and third sprints will be usability
tested and improved in the same release, while stories developed in the last
two sprints will not, unless additional sprints are added that focus solely
on fixing usability problems. However, in agile development, the most
important stories are in general developed first, so this process ensures that
the most important parts of the product have been tested. The figure also
shows that somewhat less new functionality can be developed from the
fourth sprint onwards, as part of the design and development effort will be
put into fixing usability problems found in the tests.

CHAPTER 5. RECOMMENDATIONS AND CONCLUSIONS 75

5.4 Conclusions

Improving the usability of the products developed by the case company
requires the successful integration of interaction design and agile software
development. This requires the adoption of usability practices that not
only promote usability, but also fit well with agile methods and principles
and are welcomed by stakeholders. Through a review of the literature
on agile usability, an examination of the current state of usability in the
company, and the testing of new usability practices in a case project, this
thesis has arrived at an answer to the research question in the form of six
recommended practices.

First, each team should include an interaction designer role responsible
for the usability of the product. Second, during the first sprint of every
release the entire team should focus on creating a clear product vision
and understanding the goals, needs and behavior of the target users of
the product. Third, paper prototyping should be the primary method of
design, and prototypes should be discussed, tested and communicated
clearly to the team. Fourth, design should be done one sprint ahead of
development, and should be intertwined with the process of managing
the backlog and estimating user stories. Fifth, sprint results should be
usability tested after each sprint, and the test findings should be taken into
account when designing for the next sprint. Sixth, there should be regular
communication between the designer and the rest of the team, to ensure
that the design is implemented successfully and that knowledge about
usability is spread throughout the team.

Chapter 6

Discussion

6.1 Limitations

Several limitations should be taken into account when interpreting the
results. First, the action intervention was performed within only one case
project with one team in one company. This makes it difficult to assess
which results are applicable only to the particular context and which are
more general in nature. It is possible that the personalities and skills of
the people involved play a large part in how they implement and react to
different practices, and that the results therefore would have been different
in another team or another company.

Second, the role of the researcher as an employee at the company may
have affected the research. The researcher had a considerable interest in the
success of the action intervention and the project overall. This is an inherent
weakness in the action research methods, because of its dual scientific and
practical goals. To the extent possible, efforts were made to minimize the
risk of this affecting the research, as the long term benefits of answering
the research question were of greater importance to the company than any
short term benefits the research may have bestowed on the case project and
team.

Third, the selection strategy for the interviews, especially the current
state analysis, may have affected the research. While an effort was made
to select interview participants with diverse viewpoints, a secondary goal
was to find participants that may have important insight into the questions
covered by the interviews. It is possible that this may have skewed the
results to emphasize the benefits of investing in usability and the problems
in the current software development process.

76

CHAPTER 6. DISCUSSION 77

6.2 Implications

The results of this thesis contribute to an overall positive outlook for intro-
ducing interaction design in agile organizations, with the goal of improving
the usability of products. While at first it may appear that some of the rec-
ommendations are not agile in nature, in fact most of the practices fit well
with agile values and principles, and many of the apparent conflicts are
only superficial. This is noticed by comparing the recommended practices
with the values in the agile manifesto (Beck et al., 2001):

• Individuals and interactions over processes and tools. Giving responsibil-
ity over usability to the interaction designer role is a way of promoting
the skill and motivation of individuals, and regular face-to-face com-
munication and collective learning promotes team interactions. None
of the recommended practices put an excessive emphasis on processes
or tools; simple solutions are preferred.

• Working software over comprehensive documentation. Creating a paper
prototype before development is different from traditional compre-
hensive documentation. A paper prototype is lightweight and shares
many of the benefits of working software, including, crucially, the
ability to gather realistic feedback.

• Customer collaboration over contract negotiation. Customer collaboration
is enhanced considerably by having actual end users participate in
the development process in user research as well as usability tests
of both the prototype and the working product. Observing users in
addition to listening to them makes collaboration more fruitful.

• Responding to change over following a plan. Responding to feedback
from usability tests is one way of responding to change. And while
up-front envisioning and user research are planning ahead, both
focus on user needs and other factors that change slowly compared
to design and implementation.

The results and recommendations are also in agreement with much of
the literature on agile usability. Many of the most commonly suggested
practices in the literature, such as parallel tracks (e.g. Sy, 2007), little design
up front (e.g. Beyer, Holtzblatt, and Baker, 2004), low-fidelity prototyping
(e.g. Snyder, 2003) and close collaboration (e.g. Cohn, 2010), are supported
by the research. This contributes to the idea that, while there are still many
unanswered questions in the field, some of the main findings of the past
decade are widely applicable.

CHAPTER 6. DISCUSSION 78

6.3 Future work

Based on the findings of this thesis, there are many possibilities for further
research in the field of combining interaction design with agile methods. In
addition to the general theme that the field needs more empirical research
and still lacks any controlled experiments (Silva et al., 2011), there were
many topics and specific questions raised during the research that would
benefit from more examination. These include:

• Sprint lengths. How do various sprint lengths affect the recommended
practices? How different are two-week or even one-week sprints from
four-week sprints from the point of view of interaction design?

• Up-front design. How much time should be spent on design up front,
and how is this affected by the type of product, the project and other
parameters? In which circumstances should the entire team be in-
volved from the start, and in which is it better to restricts initial design
to a smaller group, e.g. the product owner and interaction designer?

• Usability goals. What is the best way to set and follow up usability
goals in agile projects? Can the goals be followed up in the usability
tests, even if only a few users participate during each sprint? Can
concrete metrics be used? How would metrics during product devel-
opment differ from metrics on live products?

• User experience. How does a broader focus on user experience instead
of usability affect the practices? In particular, when, how and by
whom should visual design be done? What other aspects of user
experience should be considered?

6.4 Final comments

Whenever specific practices on how to do something in agile development
are proposed, it is important to keep in mind a few things. First, agile is a
mindset more than any specific process or collection of practices. Without
fostering an agile mindset in a company, it will be difficult to achieve the
full benefits of specific practices. Second, agile is about motivated and
self-organizing teams. A company should weigh the benefits of imposing
new practices against the drawbacks of reducing the control employees
have over their own work. Third, agile is about continuous improvement.
The day any single set of practices are seen as final is the day a company is
no longer agile. Keeping these considerations in mind while implementing
the recommendations will ensure the greatest benefits.

References

Ambler, Scott W. (2008). “Has agile peaked?” In: Dr. Dobb’s Journal. URL:
http://drdobbs.com/architecture-and-design/207600615.

Avison, David E. et al. (1999). “Action research”. In: Communications of the
ACM 42.1, pp. 94–97.

Beauregard, Russell and Philip Corriveau (2007). “User experience quality:
a conceptual framework for goal setting and measurement”. In: Lecture
Notes in Computer Science 4561, pp. 325–332.

Beck, Kent and Cynthia Andres (2004). Extreme Programming Explained:
Embrace Change. Upper Saddle River, NJ, USA: Pearson Education, Inc.

Beck, Kent et al. (2001). Manifesto for Agile Software Development. URL: http:
//agilemanifesto.org/.

Beyer, Hugh and Karen Holtzblatt (1998). Contextual Design: Defining Customer-
Centered Systems. London, UK: Academic Press.

Beyer, Hugh, Karen Holtzblatt, and Lisa Baker (2004). “An agile customer-
centered method: rapid contextual design”. In: Lecture Notes in Computer
Science 3134, pp. 527–554.

Budwig, Michael, Soojin Jeong, and Kuldeep Kelkar (2009). “When user
experience met agile: a case study”. In: CHI EA ’09 Proceedings of the 27th
international conference extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM, pp. 3075–3084.

Chamberlain, Stephanie, Helen Sharp, and Neil Maiden (2006). “Towards a
framework for integrating agile development and user-centred design”.
In: Lecture Notes in Computer Science 4044, pp. 143–153.

Cohn, Mike (2004). User Stories Applied. Boston, MA, USA: Pearson Educa-
tion, Inc.

— (2010). Succeeding with Agile. Boston, MA, USA: Pearson Education, Inc.
Cooper, Alan (2004). The Inmates are Running the Asylum. Indianapolis, IN,

USA: Sams Publishing.
Cooper, Alan, Robert Reimann, and Dave Cronin (2007). About Face 3: The

Essentials of Interaction Design. Indianapolis, IN, USA: Wiley Publishing,
Inc.

79

http://drdobbs.com/architecture-and-design/207600615
http://agilemanifesto.org/
http://agilemanifesto.org/

REFERENCES 80

Dybå, Tore and Torgeir Dingsøyr (2008). “Empirical studies of agile soft-
ware development: a systematic review”. In: Information and Software
Technology 50.9-10, pp. 833–859.

Federoff, Melissa and Catherine Courage (2009). “Successful user experi-
ence in an agile enterprise environment”. In: Lecture Notes in Computer
Science 5617, pp. 233–242.

Ferreira, Jennifer, James Noble, and Robert Biddle (2007a). “Agile develop-
ment iterations and UI design”. In: AGILE ’07 Proceedings of the AGILE
2007. Washington, DC, USA: IEEE Computer Society, pp. 50–58.

— (2007b). “Up-front interaction design in agile development”. In: Lecture
Notes in Computer Science 4536, pp. 9–16.

Ferreira, Jennifer, Helen Sharp, and Hugh Robinson (2011). “User expe-
rience design and agile development: managing cooperation through
articulation work”. In: Software: Practice and Experience 41.9, pp. 963–974.

Fox, David, Jonathan Sillito, and Frank Maurer (2008). “Agile methods and
user-centered design: how these two methodologies are being success-
fully integrated in industry”. In: AGILE ’08 Proceedings of the Agile 2008.
Washington, DC, USA: IEEE Computer Society, pp. 63–72.

Garrett, Jesse James (2011). The Elements of User Experience: User-Centered
Design for the Web and Beyond. Second Edition. Berkeley, CA, USA: New
Riders.

Goodwin, Kim (2009). Designing for the Digital Age: How to Create Human-
Centered Products and Services. Indianapolis, IN, USA: Wiley Publishing,
Inc.

Gould, John D. and Clayton Lewis (1985). “Designing for usability: key
principles and what designers think”. In: Communications of the ACM
28.3, pp. 300–311.

Gulliksen, Jan et al. (2003). “Key principles for user-centred systems design”.
In: Behaviour & Information Technology 22.6, pp. 397–409.

Hall, Roger R. (2001). “Prototyping for usability of newtechnology”. In:
International Journal of Human-Computer Studies 55.4, pp. 485–501.

ISO 9241-11 (1998). Ergonomic requirements for office work with visual dis-
play terminals (VDTs) – Part 11: Guidance on usability. Helsinki, Finland:
Suomen Standardisoimisliitto.

ISO 9241-210 (2010). Ergonomics of human-system interaction – Part 210:
Human-centred design for interactive systems. Helsinki, Finland: Suomen
Standardisoimisliitto.

Jokela, Timo and Pekka Abrahamsson (2004). “Usability assessment of an
extreme programming project: close co-operation with the customer
does not equal to good usability”. In: Lecture Notes in Computer Science
3009, pp. 393–407.

REFERENCES 81

Jordan, Patrick W. (2002). Designing Pleasurable Products. London, UK: Taylor
& Francis.

Kreitzberg, Dr. Charles B. and Ambrose Little (2009). “Agile UX develop-
ment”. In: MSDN Magazine. URL: http://msdn.microsoft.com/en-
us/magazine/dd882523.aspx.

Krug, Steve (2006). Don’t Make Me Think! A Common Sense Approach to Web
Usability. Second Edition. Berkeley, CA, USA: New Riders.

Leffingwell, Dean (2011). Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise. Boston, MA, USA: Pear-
son Education, Inc.

Medlock, Michael C. et al. (2002). “Using the RITE method to improve prod-
ucts: a definition and a case study”. In: Usability Professionals Association,
Orlando, FL, July, 2002.

Meszaros, Gerard and Janice Aston (2006). “Adding usability testing to an
agile project”. In: AGILE ’06 Proceedings of the conference on AGILE 2006.
Washington, DC, USA: IEEE Computer Society, pp. 289–294.

Miller, Lynn (2005). “Case study of customer input for a successful product”.
In: ADC ’05 Proceedings of the Agile Development Conference. Washington,
DC, USA: IEEE Computer Society, pp. 225–234.

Moløkken, Kjetil and Magne Jørgensen (2003). “A review of surveys on
software effort estimation”. In: ISESE ’03 Proceedings of the 2003 Inter-
national Symposium on Empirical Software Engineering. Washington, DC,
USA: IEEE Computer Society, pp. 223–230.

Nelson, Elden (2002). “Extreme programming vs. interaction design”. In:
FTP Online. October 3.

Nielsen, Jakob (1993). Usability Engineering. San Francisco, CA, USA: Mor-
gan Kaufmann.

— (2003). “Return on investment for usability”. In: Jakob Nielsen’s Alertbox.
URL: http://www.useit.com/alertbox/roi-first-study.html.

— (2007). “Should designers and developers do usability?” In: Jakob Nielsen’s
Alertbox. URL: http://www.useit.com/alertbox/own-usability.
html.

— (2008a). “Agile development projects and usability”. In: Jakob Nielsen’s
Alertbox. URL: http://www.useit.com/alertbox/agile-methods.
html.

— (2008b). “Usability ROI declining, but still strong”. In: Jakob Nielsen’s
Alertbox. URL: http://www.useit.com/alertbox/roi.html.

— (2009a). “Agile user experience projects”. In: Jakob Nielsen’s Alertbox. URL:
http://www.useit.com/alertbox/agile-user-experience.html.

— (2009b). “Discount usability: 20 years”. In: Jakob Nielsen’s Alertbox. URL:
http://www.useit.com/alertbox/discount-usability.html.

http://msdn.microsoft.com/en-us/magazine/dd882523.aspx
http://msdn.microsoft.com/en-us/magazine/dd882523.aspx
http://www.useit.com/alertbox/roi-first-study.html
http://www.useit.com/alertbox/own-usability.html
http://www.useit.com/alertbox/own-usability.html
http://www.useit.com/alertbox/agile-methods.html
http://www.useit.com/alertbox/agile-methods.html
http://www.useit.com/alertbox/roi.html
http://www.useit.com/alertbox/agile-user-experience.html
http://www.useit.com/alertbox/discount-usability.html

REFERENCES 82

Nielsen, Jakob (2011). “Parallel & iterative design + competitive testing =
high usability”. In: Jakob Nielsen’s Alertbox. URL: http://www.useit.
com/alertbox/design-diversity-process.html.

Norman, Donald A. (2002). The Design of Everyday Things. New York, NY,
USA: Basic Books.

Pichler, Roman (2010). Agile Product Management with Scrum. Boston, MA,
USA: Pearson Education, Inc.

Rapal Oy (2012). Our Company. Accessed March 23, 2012. URL: http://
www.rapal.fi/en/our-company/.

Rubin, Jeff and Dana Chisnell (2008). Handbook of Usability Testing. Second
Edition. Indianapolis, IN, USA: Wiley Publishing, Inc.

Runeson, Per and Martin Höst (2009). “Guidelines for conducting and
reporting case study research in software engineering”. In: Empirical
Software Engineering 14.2, pp. 131–164.

Schwaber, Ken (2004). Agile Project Management with Scrum. Redmond, WA,
USA: Microsoft Press.

Schwaber, Ken and Mike Beedle (2001). Agile Software Development with
Scrum. Prentice Hall.

Schwaber, Ken and Jeff Sutherland (2011). The Scrum Guide. URL: http:
//www.scrum.org/scrumguides/.

Sefelin, Reinhard, Manfred Tscheligi, and Verena Giller (2003). “Paper
prototyping – what is it good for? A comparison of paper-and computer-
based low-fidelity prototyping”. In: CHI ’03 extended abstracts on Human
factors in computing systems. New York, NY, USA: ACM, pp. 778–779.

Shine Technologies (2003). Agile Methodologies Survey Results. Melbourne,
Australia: Shine Technologies Pty. Ltd.

Silva, Tiago Silva da et al. (2011). “User-centered design and agile meth-
ods: a systematic review”. In: AGILE ’11 Proceedings of the 2011 Agile
Conference. Washington, DC, USA: IEEE Computer Society, pp. 77–86.

Snyder, Carolyn (2003). Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. San Francisco, CA, USA: Elsevier.

Sy, Desirée (2007). “Adapting usability investigations for agile user-centered
design”. In: Journal of Usability Studies 2.3, pp. 112–132.

Ungar, Jim and Jeff White (2008). “Agile user centered design: enter the
design studio – a case study”. In: CHI ’08 extended abstracts on Human
factors in computing systems. New York, NY, USA: ACM, pp. 2167–2178.

VersionOne (2010). State of Agile Survey 2010. Atlanta, GA, USA: VersionOne
Inc.

Walker, Miriam, Leila Takayama, and James A. Landay (2002). “High-
fidelity or low-fidelity, paper or computer? Choosing attributes when

http://www.useit.com/alertbox/design-diversity-process.html
http://www.useit.com/alertbox/design-diversity-process.html
http://www.rapal.fi/en/our-company/
http://www.rapal.fi/en/our-company/
http://www.scrum.org/scrumguides/
http://www.scrum.org/scrumguides/

REFERENCES 83

testing web prototypes”. In: Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting 46.5, pp. 661–665.

Yin, Robert K. (2009). Case Study Research: Design and Methods. Fourth Edi-
tion. Thousand Oaks, CA, USA: SAGE Inc.

Appendix A

Current state analysis interview

This is the interview that was conducted as part of the current state analysis.
The interview was conducted in Finnish with all participants. Below is a
translation of the original Finnish interview. The participants were first
read the introduction and then asked the interview questions.

A.1 Introduction

• This interview is part of my master’s thesis on improving usability in
agile software development

• Participation is voluntary
• Participation is anonymous, but in practice there is a risk that you

may be recognized based on your work description or answers
• If you have any questions about the research now or at a later stage,

you may ask me
• In this interview, usability is defined as a product quality attribute

that describes how easy, efficient and satisfying the use of a product
is for the end user

• This interview is part of the first stage of the research
• The objective of this stage is to examine the current state of usability

at Rapal, and especially what problems are present in the current
processes and methods

A.2 The interviewee

• What do you do for work at Rapal?
• What kind of work have you been doing lately?
• Can you give an example?

84

APPENDIX A. CURRENT STATE ANALYSIS INTERVIEW 85

• How well do you think you understand the software development
process at Rapal?

• How well do you think you understand usability?
• How about usability practices and methods?
• How important do you personally consider usability?

A.3 Current products

• How usable do you think the products of Rapal are?
• What strengths do the products have concerning usability?
• What weaknesses do the products have concerning usability?
• How do the usability of the products affect your own work?
• How has the usability of the products changed lately?
• How good knowledge do you think we have about the usability of

the products?
• Do you think more or less effort should be put into usability?
• How would Rapal benefit from a greater investment in usability?
• What drawbacks could there be in a greater investment in usability?

A.4 The development process

• How would you describe the software development process at Rapal
in general terms?

• How is the usability of products taken into account in the develop-
ment process?

• What specific usability practices are used?
• How well do you think the development process at Rapal promotes

usability?
• How do Scrum practices affect usability?
• How does the product owner role affect usability?
• What are the strengths in the software development process concern-

ing usability?
• What are the weaknesses in the software development process con-

cerning usability?
• Can you give examples of weaknesses or problems?
• What do you think is the cause of these problems?

APPENDIX A. CURRENT STATE ANALYSIS INTERVIEW 86

A.5 The Scenario project

• How is usability taken into account in the Scenario project?
• How is this different from previous projects?
• What are the strengths of the project concerning usability?
• What are the weaknesses of the project concerning usability?
• Can you give examples of weaknesses or problems?
• What do you think is the cause of these problems?

A.6 The future

• How do you think the way usability is taken into account will change
at Rapal in the coming years?

• How would you like it to change?
• If the two answers are different, what do you think is the reason?
• How would you measure progress in improving usability?
• What risks do you see in the future in improving usability practices?
• Do you have any personal goals or wishes regarding usability?

Appendix B

Action intervention interview

This is the interview that was conducted as part of the action intervention.
The interview was conducted in Finnish with all participants. Below is a
translation of the original Finnish interview. The participants were first
read the introduction and then asked the interview questions.

B.1 Introduction

• This interview is part of my master’s thesis on improving usability in
agile software development

• Participation is voluntary
• Participation is anonymous, but in practice there is a risk that you

may be recognized based on your work description or answers
• If you have any questions about the research now or at a later stage,

you may ask me
• In this interview, usability is defined as a product quality attribute

that describes how easy, efficient and satisfying the use of a product
is for the end user

• The objective of this interview is to examine how well usability prac-
tices and methods have worked in the Scenario project, as well as
what have been their strengths and weaknesses

• It is important that you answer as honestly as possible without wor-
rying about offending me or criticizing what we have done

B.2 Usability activities in general

• In the Scenario project, how much effort has been put into usability?
• How much effort has been put into understanding users?

87

APPENDIX B. ACTION INTERVENTION INTERVIEW 88

• How much effort has been put into user interface design?
• How much effort has been put into usability evaluation?
• How well have the usability practices worked as an integral part of

the software development process?

B.3 The interaction designer role

• How do you think the interaction designer role has worked as part of
the team?

• What do you think the most important tasks of the role has been?
• How has the role affected your own work?
• How much do you think that you have done work related to usability?
• How much do you think that other team members have done work

related to usability?
• Do you think there has been more benefit or harm in having the

designer as a team member?
• Do you think the team would have needed more or less usability

know-how?
• Do you think the responsibility for usability has been too much or too

little concentrated in one person?
• What do you think would have been the consequences if one of the

developers also had assumed the interaction designer role?
• What do you think would have been the consequences if there had

been no interaction designer at all?
• Do you have any other comments about the interaction designer role?

B.4 The product vision and user research

• During the project, how good has your understanding about the
product vision been?

• How good has your understanding about the target users and their
needs been?

• How good has your understanding about the usability goals been?
• From where have you primarily received information about the prod-

uct vision and target users?
• How well did you understand the product vision and user needs

when development started?
• How has this affected your work during the project?

APPENDIX B. ACTION INTERVENTION INTERVIEW 89

• What do you think would have been the effects if, before develop-
ment began, there would have been a one month sprint focusing on
clarifying the product vision and understanding the target users?

• Do you have any other comments about the product vision and user
research?

B.5 The use of paper prototypes

• How do you think paper prototypes have worked as a design tool
during the project?

• How well do you think paper prototypes communicate the design?
• How well have paper prototypes worked in combination with user

stories and acceptance tests?
• Do paper prototypes include sufficient information about the design

from the point of view of development?
• Do paper prototypes help with estimating user stories?
• Have you created paper prototypes?
• If so, what has your opinion of it been?
• What problems are there with paper prototypes?
• Do you have any other comments about the use of paper prototypes?

B.6 Designing one sprint ahead

• What have been the advantages and disadvantages when designing
in the previous sprint?

• What have been the advantages and disadvantages when not design-
ing in the previous sprint?

• What do you think has been a suitable level of design in the previous
sprint?

• How has design and updating user stories worked in combination?
• Do you have any other comments about designing one sprint ahead?

B.7 Usability testing of sprint results

• What have been the advantages and disadvantages of usability testing
the working product?

• How well did you understand the test results by watching the record-
ing of the tests?

APPENDIX B. ACTION INTERVENTION INTERVIEW 90

• How useful was analyzing the tests together with the team?
• How did the tests affect your view of the usability of the product?
• How did the usability tests affect your own work?
• Do you have any other comments about usability testing?

B.8 Communication within the team

• How well do you think communication related to usability has worked
within the team?

• How have the daily scrum meetings affected communication?
• What do you think were the biggest communication challenges?
• How well has the project wiki worked for communication related to

usability?
• How well has the paper prototype wall worked for communication?
• Do you have any other comments about communication?

B.9 Other

• Do you have any other comments about usability in the Scenario
project?

Appendix C

Observation framework

This is the framework that was used as a basis for the observation during
the action intervention.

C.1 Usability activities in general

• How much resources were dedicated to usability activities?
• How well did the usability activities integrate into the development

process?
• How did the different stakeholders react to usability activities?

C.2 The interaction designer role

• What were the advantages of a dedicated interaction designer role?
• What were the disadvantages of a dedicated interaction designer role?
• How did the other team members relate to the role?
• How were responsibilities divided?
• How much skill was required for the role?
• How much time was required for the role?

C.3 The product vision and user research

• How well did the team understand the product vision?
• How well did the team understand the target users?
• How well did the team understand the usability goals?
• Which methods were used for understanding users?

91

APPENDIX C. OBSERVATION FRAMEWORK 92

C.4 The use of paper prototypes

• What were the advantages of using paper prototypes?
• What were the disadvantages of using paper prototypes?
• How did different stakeholders respond to the prototypes?
• How useful were the prototypes for the product owner?
• How useful were the prototypes for developers?
• How did paper prototypes compare to high-fidelity prototypes?
• How did prototype testing work?

C.5 Designing one sprint ahead

• What were the advantages of designing one sprint ahead?
• What were the disadvantages of designing one sprint ahead?
• What was the appropriate level of prototyping before sprint planning?
• How did paper prototyping work in combination with updating the

product backlog?

C.6 Usability testing of sprint results

• What were the advantages of testing the working product?
• What were the disadvantages of testing the working product?
• How did testing the working product differ from testing a paper

prototype?
• How did watching a recording of the test with the team work?
• What was the team reaction to analyzing the tests together?
• How many of the usability problems found got fixed?
• How much effort did usability testing require?

C.7 Communication within the team

• What part of usability-related communication worked well?
• What were the problems with usability-related communication?
• How much face-to-face communication was necessary to communi-

cate the design?

	Cover page
	Acknowledgements
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Research question and scope
	1.3 Research approach
	1.4 Notes on terminology

	2 Literature review
	2.1 Introduction
	2.2 Agile software development
	2.2.1 Introduction
	2.2.2 Adoption of agile methods in industry
	2.2.3 The benefits and limitations of agile methods
	2.2.4 Scrum
	2.2.5 Extreme programming
	2.2.6 Agile requirements

	2.3 Usability and interaction design
	2.3.1 Introduction
	2.3.2 Usability
	2.3.3 User experience
	2.3.4 The benefits of usability
	2.3.5 Interaction design
	2.3.6 Similarities and differences to agile methods

	2.4 Interaction designers on agile teams
	2.4.1 Introduction
	2.4.2 The interaction designer
	2.4.3 Organization structure and collaboration
	2.4.4 Cross-functionality

	2.5 Interaction design in the agile process
	2.5.1 Introduction
	2.5.2 Parallel design and development tracks
	2.5.3 Little design up front

	2.6 Interaction design activities in agile projects
	2.6.1 Introduction
	2.6.2 User research and modeling
	2.6.3 Design and prototyping
	2.6.4 Usability evaluation

	3 Methods
	3.1 Introduction
	3.2 Action research
	3.3 Case description
	3.3.1 The case company
	3.3.2 The case project
	3.3.3 The project team

	3.4 Research process
	3.5 Data collection and analysis
	3.5.1 Interviews
	3.5.2 Observation
	3.5.3 Triangulation

	3.6 Ethical considerations and confidentiality
	3.6.1 Informed consent
	3.6.2 Confidentiality

	3.7 Tested usability practices
	3.7.1 Paper prototyping
	3.7.2 Usability testing
	3.7.3 High-fidelity prototyping

	4 Results
	4.1 Introduction
	4.2 Current state analysis
	4.2.1 Interview participants
	4.2.2 Usability of the current products
	4.2.3 Usability in the development process
	4.2.4 Usability in the future
	4.2.5 Summary

	4.3 Action intervention
	4.3.1 Usability activities in general
	4.3.2 The interaction designer role
	4.3.3 The product vision and user research
	4.3.4 The use of paper prototypes
	4.3.5 Designing one sprint ahead
	4.3.6 Usability testing of sprint results
	4.3.7 Communication within the team
	4.3.8 Summary

	5 Recommendations and conclusions
	5.1 Introduction
	5.2 Recommended practices
	5.2.1 Include an interaction designer on the team
	5.2.2 Understand the users before development begins
	5.2.3 Design primarily using iterative paper prototyping
	5.2.4 Design one sprint ahead of development
	5.2.5 Usability test sprint results with representative users
	5.2.6 Support development through regular communication

	5.3 Combining the practices
	5.4 Conclusions

	6 Discussion
	6.1 Limitations
	6.2 Implications
	6.3 Future work
	6.4 Final comments

	References
	A Current state analysis interview
	A.1 Introduction
	A.2 The interviewee
	A.3 Current products
	A.4 The development process
	A.5 The Scenario project
	A.6 The future

	B Action intervention interview
	B.1 Introduction
	B.2 Usability activities in general
	B.3 The interaction designer role
	B.4 The product vision and user research
	B.5 The use of paper prototypes
	B.6 Designing one sprint ahead
	B.7 Usability testing of sprint results
	B.8 Communication within the team
	B.9 Other

	C Observation framework
	C.1 Usability activities in general
	C.2 The interaction designer role
	C.3 The product vision and user research
	C.4 The use of paper prototypes
	C.5 Designing one sprint ahead
	C.6 Usability testing of sprint results
	C.7 Communication within the team

